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Volatile anesthetics-induced neuroinflammatory
and anti-inflammatory responses
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Abstract

Volatile anesthetics have been the major anesthetics used clinically for more than 150 years. They provide all
components of general anesthesia and are easy to be applied and monitored with modern equipment and
technology. In addition to having anesthetic property, volatile anesthetics have multiple other effects. Many studies
have clearly shown that volatile anesthetics can reduce systemic and local inflammatory responses induced by
various stimuli in humans and animals. On the other hand, recent animal studies have shown that volatile
anesthetics may induce mild neuroinflammation. These dual effects on inflammation may have significant biological
implications and are briefly reviewed here.
Introduction
Volatile anesthetics were first introduced into clinical
use in 1842 [1]. They have been the mainstay general an-
esthetics for millions of patients each year. The com-
monly used volatile anesthetics in current clinical
practice include isoflurane, sevoflurane and desflurane
[1]. Halothane is no longer used in the U.S.A. but may
be used in developing countries [2].
Various theories have been developed over the years to

explain the general anesthesia induced by volatile anes-
thetics. Most researchers now believe that anesthetics
bind particular proteins and modify their functions. These
effects ultimately result in anesthetic action [1]. A variety
of protein targets have been identified for volatile anes-
thetics. These include ion channels, muscarinic acetylcho-
line receptors, opioid receptors, α2-adrenergic receptors,
5-hydroxytryptophan (HT)2A receptors and N-methyl-
D-aspartate (NMDA) receptors [3]. Volatile anesthetics
provide all components of general anesthesia including
unconsciousness, amnesia, analgesia and muscle relax-
ation [1]. Apart from the anesthetic property, these anes-
thetics have found to have multiple biological effects, such
as the modulation of inflammation [1,4]. Recently, volatile
anesthetics have found to cause mild neuroinflammation
[5]. Since inflammation is a fundamental pathological
process involved in virtually all diseases acquired after
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birth, for example, Alzheimer’s and Parkinson’s disease
[6,7], these effects of volatile anesthetics on inflammation
may have significant biological implications.
Overview of the inflammatory process
Definition of inflammation
Acute inflammation can be defined clinically by the clas-
sical signs: pain, heat, redness, swelling and loss of function
[8]. On a cellular and molecular level, the inflammatory
process is a complex cascade involving inflammatory cells,
such as mast cells and neutrophils, and inflammatory fac-
tors including cytokines [9].
In contrast to inflammation, infection requires the in-

vasion of a host’s bodily tissues by disease causing organ-
isms, their multiplication, the reaction of host tissues to
these organisms and the toxin they produce [8]. Obvi-
ously, infection often induces inflammation.
Overview of the inflammatory process by using
neuroinflammation as an example
When a tissue is injured or infected, a significant
amount of pathogenic molecules are produced. These
molecules activate dendritic cells, mastocytes, histiocytes
and macrophages that reside in the tissues. Dendritic
cells are primarily involved in the initiation of the im-
mune response by presenting processed antigens to
other cells [10]. Mastocytes, histiocytes and macro-
phages release inflammatory mediators, such as inflam-
matory cytokines, to cause the signs of inflammation.
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Microglial cells are macrophages residing in the central
nervous tissues. They are involved in the neuroinflammatory
process. Activation of microglial cells leads to an increase of
nitric oxide (NO) via inducible nitric oxide synthase (iNOS)
[11]. NO inhibits mitochondrial respiration and induces
protein modification, such as S-nitrosylation and nitra-
tion [11]. The increased iNOS and NO production can
lead to increased production of interleukin (IL)1β (IL-1β),
tumor necrosis factor (TNF)-α and interferon-γ (INF-γ)
from various cells including microglial cells and neurons
[5,12]. TNF-α then triggers activation of caspase 8, which
leads to cleavage of caspase 3 to result in cell death [11].
Furthermore, TNF-α can activate NADPH oxidase that
produces reactive oxygen species (ROS) from microglial
cells, mediates the release of additional proinflammatory
factors, and is involved in the induction of caspase-
dependent neuronal apoptosis as well as the induction of
glutamate release from various brain cells including neu-
rons, astrocytes, dendritic cells and microglia [11,13].
Intracellular signaling molecules that regulate cytokine

production and iNOS expression include the mitogen
activated protein kinases (MAPK). They are extracellular
signal-regulated kinase (ERK 1/2), C-Jun N-terminal kin-
ase (JNK 1/2/3) and p38 kinase (p38) [11]. These kinases
lead to the activation of transcription factors, such as nu-
clear factor κ-light-chain-enhancer of activated B cells
(NF-κB), signal activator and transducer of transcription-1
(STAT-1) and activator protein-1 (AP-1), to regulate gene
expression [11].
In addition, intracellular calcium is also a significant

signaling molecule in the inflammatory cascade [7].
The anti-inflammatory responses of volatile anesthetics
The effects on systemic inflammation
We have shown that exposure of rat NR8283 macro-
phages to 2% isoflurane for 1 h at 30 min before the ap-
plication of lipopolysaccharide (LPS) plus INF-γ reduced
macrophage injury and NO production. These effects
were found to be protein kinas C-dependent [14].
Fuentes et al. found a significant reduction of LPS-

induced increase of serum TNF-α, IL-6, and IL-10 in mice
exposed to 2% isoflurane for 1 h [15,16]. LPS is an initiator
of inflammation [16,17]. This isoflurane effect may be due
to the inhibition of NF-κB [15,16]. As a result, mice ex-
posed to isoflurane after a lethal dose (20 mg/kg) survived
better than those without isoflurane exposure [16].
Chiang et al. applied 1.4 minimum alveolar concentra-

tions (MAC) isoflurane for 2 h (from 1 h before and 1 h
after zymosan application) to mice. Zymosan was used
to induce peritonitis. This isoflurane application reduced
the number of leukocytes in the peritoneal lavage and
the production of inflammatory mediators in the lavage
cells [18].
A recent study showed that adult male rats exposed to
2% sevoflurane or 1.5% isoflurane for 30 min before cecal
ligation and puncture (CLP) had better survival rates than
rats exposed to oxygen only. The CLP procedure was
done under ketamine, xylazine and fentanyl anesthesia.
The pre-exposure to sevoflurane and isoflurane also re-
duced the plasma IL-1β, IL-6 and TNF-α levels after CLP.
These results suggest that a pre-exposure to volatile anes-
thetics induces systemic anti-inflammatory effect [19].

The anti-inflammatory effect in various organs
Volatile anesthetics have anti-inflammatory effects in
various organs, such as the nervous system, the heart,
the respiratory system and the kidneys [4,17,20,21].
We have shown that exposure of the C8-B4 mouse

microglial cells to various concentrations of isoflurane for 1
h at 30 min before the application of LPS plus INF-γ re-
duced microglial injury, NO production and glutamate re-
lease [22]. In another study, we showed that delayed
exposure to 2% isoflurane for up to 2 h after the application
of LPS plus INF-γ attenuated C8-B4 mouse microglial in-
jury and NO production. This form of isoflurane treatment
also reduced iNOS expression in the mouse brains [23].
These results suggest that isoflurane can inhibit microglial
activation. These isoflurane effects on microglial cells may
be mediated by activation of protein kinase C [22].
We recently showed that application of 2% isoflurane

for 1 h after brain ischemia attenuated the increased
NF-κB activation and the production of IL-1β and IL-6
in the ischemic brain tissues. This delayed isoflurane ex-
posure also improved neurological outcome, which may
be mediated by the inhibition of IL-1β expression be-
cause isoflurane no longer induced neuroprotection in
the IL-1β deficient mice [4]. These results provide strong
evidence of inhibition of brain ischemia and reperfusion-
induced neuroinflammation by isoflurane and its role in
neuroprotection.
Hu et al. reported that neutrophils added to rat hearts

lost their ability to cause cardiac dysfunction when they
were pretreated with 1 MAC sevoflurane or isoflurane for
15 min [20]. Isoflurane and sevoflurane reduced super-
oxide production from neutrophils by 29% and 33%, re-
spectively. Isoflurane at 0.25 MAC partly inhibited the
effects of neutrophils on cardiac functions [20].
Giraud et al. have shown that rats under halothane

anesthesia (1% or 1.5% for 4 h) had a 55% reduction of
intratracheal LPS-induced recruitment of polymorpho-
nuclear neutrophils (PMN) and a 60% decrease of IL-6,
TNF-α and monophage inflammatory protein (MIP-2) in
the bronchial lavage and lungs compared to those under
thiopental anesthesia [17].
Similar to the findings in other organs, volatile anes-

thetics have anti-inflammatory effects in the kidneys.
Sevoflurane application (2.2% for 4 to 16 h) reduced
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TNF-α-induced injury of HK-2 cells, a human kidney
proximal tubule cell line. Sevoflurane also attenuated the
NF-κB activation and inflammatory mediator expression
in these cells [21].

Human evidence
In addition to animal studies, clinical studies have sug-
gested an anti-inflammatory effect of volatile anesthetics.
Sevoflurane at 2% has been reported to inhibit the func-

tion of inflammatory cells by decreasing macrophage-1
antigen receptor expression on granulocytes and PMN in
human blood circulating in the extracorporeal circulation
circuit. However, sevoflurane had no effect on leukocyte
aggregation formation and cytokine release [24].
A study by Nader et al. [25] published in 2004 sup-

ports the previously mentioned findings that volatile an-
esthetics have systemic anti-inflammatory effects shown
in animals. The authors had 21 patients anesthetized by
propofol-based total intravenous anesthesia. They were
randomized into two groups. One group (11 patients)
received 2% sevoflurane in the cardioplegia solution
(sevoflurane group) and the other group did not (control
group). Serum TNF-α was not detectable in the
sevoflurane group and the serum IL-6 levels were signifi-
cantly lower in the sevoflurane group compared to the
control group [25]. Similar results were observed by
Kawamura et al. [26]. Nader et al. [25] also found that
patients in the sevoflurane group had better cardiac
function immediately after the cardiopulmonary bypass.
Mahmoud et al. [27] found that alveolar and plasma

concentrations of IL-8 and TNF-α were significantly
lower in patients undergoing thoracic surgical proce-
dures under 1 MAC isoflurane anesthesia compared to
patients who received propofol (4 – 6 mg/kg/h)-based
anesthesia [27]. Similarly, De Conno et al. [28] investi-
gated the modulatory effect of sevoflurane on inflamma-
tion in 54 patients undergoing thoracic surgery. They
found that 1 MAC sevoflurane reduced the levels of
TNF-α, IL-6, IL-8 and monocyte chemoattractant pro-
tein 1 in the lavage fluids after one lung ventilation com-
pared with patients under propofol anesthesia.

Neuroinflammation induced by volatile anesthetics
Recently, we showed that exposure to 1.2% isoflurane for
2 h caused a small increase of IL-1β and activated caspase
3 in the hippocampi of both young adult and elderly rats.
This isoflurane exposure also leaded to cognitive impair-
ment. Lidocaine, a local anesthetic with anti-inflammatory
property, inhibited isoflurane-induced IL-1β increase and
cognitive impairment. Also, isoflurane did not induce cog-
nitive impairment in the IL-1β deficient mice. These re-
sults suggest that isoflurane induces neuroinflammation
that then leads to cognitive impairment [5,29]. Similar
to our study, a more recent study showed that exposure
of 6-day old mice to 3% sevoflurane for 2 h each day for 3
days increased IL-6 in the brain tissues and resulted in cog-
nitive impairment of these mice when they were more than
one month old. These IL-6 increase and cognitive impair-
ment were blocked by ketorolac, an anti-inflammatory re-
agent [30]. Despite of these lines of evidence in animals,
evidence for volatile anesthetics-induced neuroinflammation
is lacking up till now.
Little is known for the mechanisms of volatile

anesthetics-induced neuroinflammation. Isoflurane has
been shown to open the blood brain barrier [31]. This
can increase the permeation of intravascular substances
to the brain tissues. A recent study showed that expos-
ure of H4 human neuroglioma cells to 2% isoflurane or
4.1% sevoflurane for 6 h activated NF-κB [32]. Since
NF-κB is a transcription factor known to increase
inflammatory cytokine production [33], activation of NF-
κB is presumably a mechanism for volatile anesthetics-
induced neuroinflammation.

Prospective
Many animal studies have shown that volatile anes-
thetics can inhibit inflammatory process induced by vari-
ous stimuli including ischemia and inflammation
inducing agents. This effect is often translated into organ
protection. Similar findings have been obtained in
humans. However, limited animal data have suggested
that volatile anesthetics can induce neuroinflammation
in the absence of other stimuli. This effect is yet to be
verified in humans. Nevertheless, current evidence indi-
cates dual effects of volatile anesthetics on inflammatory
process: they can inhibit inflammation induced by various
potentially harmful stimuli and induce neuroinflammation
in the absence of stimuli. Since volatile anesthetics are
often used to provide anesthesia for surgery (a stimulus),
the anti-inflammatory effect may be what we usually see
with volatile anesthetic use in the clinical practice. Under-
standably, the type and the length of surgical procedures
seem to play a role in the anti-inflammatory effect. Goto
at al. reported no effect on inflammation from volatile an-
esthetics for patients undergoing cataract surgery [34].
This study suggests that the inflammatory response for
minor surgery is not significantly affected by volatile
anesthetics.
The effects of volatile anesthetics on inflammation

may have significant implications. Inflammation is a
common pathological process involved in almost all dis-
eases acquired in life. Inflammation is also involved in
various processes during perioperative period, such as
wound healing and infection prevention. Further studies
are needed to determine the consequences of the volatile
anesthetic effects on inflammation under various clinical
conditions. In addition, current studies have mainly ex-
plored the role of NF-κB in these anesthetic effects.



Blum and Zuo Medical Gas Research 2013, 3:16 Page 4 of 4
http://www.medicalgasresearch.com/content/3/1/16
Further studies are needed to fully understand how vola-
tile anesthetics can induce anti-inflammatory responses
and neuroinflammation.
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