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Abstract

Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible
therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such
as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric
plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have
mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and
eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play
the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and
composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis,
necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique
finding opens up its potential therapy in oncology.
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Introduction
William Crookes identified plasma in 1879. 99% of the vis-
ible universe is made up of plasma, referred to as the fourth
state of matter. The other states of matter are liquid, gas,
and solid (Figure 1). Plasma is a partially ionized gas with
ions, electrons, and uncharged particles such as atoms,
molecules, and radicals. There are two types of plasma:
thermal and non-thermal or cold atmospheric plasma.
Thermal plasma has electrons and heavy particles (neutrals
and ions) at the same temperature. Cold Atmospheric
Plasma (CAP) is said to be non-thermal because it has elec-
trons at a hotter temperature than the heavy particles that
are at room temperature. CAP is a specific type of plasma
that is less than 104°F at the point of application. There are
several methods to produce CAP such as Dielectric Barrier
Discharge (DBD), Atmospheric Pressure Plasma Jet (APPJ),
plasma needle, and plasma pencil. Several different gases
can be used to produce CAP such as Helium, Argon, Nitro-
gen, Heliox (a mix of helium and oxygen), and air. Due to
the ability of CAP to deactivate microorganisms, cause cell
* Correspondence: johnzhang3910@yahoo.com
1Department of Physiology, Loma Linda University School of Medicine, Risley
Hall, Room 223, Loma Linda, CA 92354, USA
2Department of Neurosurgery, Loma Linda University School of Medicine,
Loma Linda, CA, USA

© 2013 Hoffmann et al.; licensee BioMed Cent
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
detachment, and cause death in cancer cells, researchers
have been interested in finding uses for CAP in dentistry
and oncology.

Methods of production
Several different types of CAP have been developed for bio-
medical uses. Energy is needed to produce and maintain
plasma. Thermal, electric, or light energy can be used. Usu-
ally, the discharge needed to produce CAP is induced elec-
trically. Some methods used to produce CAP include:
Dielectric Barrier Discharge (DBD), Atmospheric Pressure
Plasma Jet (APPJ), Plasma Needle, and Plasma Pencil.

Dielectric barrier discharge
In 1857, Siemens was first to conduct experiments on
Dielectric Barrier Discharge (DBD). DBD has many ap-
plications including: sterilization of living tissue, bacteria
inactivation, angiogenesis, surface treatment, and
excimer formation [1-12]. The dielectric barrier dis-
charge (DBD) consists of two flat metal electrodes that
are covered with dielectric material. A carrier gas moves
between the two electrodes and is ionized to create
plasma. One electrode is a high voltage electrode and
the other is a grounded electrode. High voltages are
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Figure 1 The four states of matter.
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required to produce the discharge needed to create the
plasma. Alternative Current (AC) high voltages generally
drive dBD’s with frequencies in the kHz range. The
power consumption is between 10 and 100 W [13-16].
There are many variations in the configuration of the
electrodes, but the concept behind them all remains the
same. For example, some electrodes are cylindrical in-
stead of flat and sometimes the dielectric material covers
only one electrode instead of both.
More recently, Fridman et al. developed the floating-

electrode DBD (FE-DBD) [17]. It is similar to the ori-
ginal DBD and consists of two electrodes: an insulated
high voltage electrode and an active electrode. The dif-
ference between FE-DBD and DBD is that the second
electrode is not grounded; it is active meaning that the
second electrode can be human skin, a sample, and
even an organ. The powered electrode needs to be
close to the surface of the second electrode (< 3mm) to
create the discharge. It has been used on endothelial
cells, melanoma skin cancer, and blood coagulation. It
has also been used in living tissue sterilization and in
deactivation of Bacillus stratosphericus (Figure 2)
[18-22]. Plasma jets using a DBD system have also been
created [23-25].
Figure 2 .Diagram of a Dielectric Barrier Discharge and a Floating Ele
Plasma by the Dielectric Barrier Discharge (DBD) and B presents the Floatin
Plasma jet
Radio frequency plasma jets
One type of plasma jet, which is employed for bacterial
sterilization, is the Atmospheric Pressure Plasma Jet
(APPJ) [26]. The APPJ consists of two coaxial electrodes
between which a feed gas (mixtures of helium, oxygen,
and other gases) flows at a high rate. The outer electrode
is grounded while Radio Frequency (RF) power (50-
100W) at 13.56 MHz is applied to the central electrode
that creates a discharge. The reactive species produced
exits the nozzle at high velocity and arrives to the area
that is to be treated. APPJ has been used for the inacti-
vation of several micro-organisms [27-35].
Koinuma et al. developed the earliest RF cold plasma

jet in 1992 [36]. The cathode is a needle electrode made
of tungsten or stainless steel with a 1 mm diameter con-
nected to a RF source (13.56 MHz). The needle elec-
trode lies within a quartz tube whereas the anode
electrode is grounded. Depending on the application, he-
lium or argon were mixed with various gases. This group
published several papers describing its variants and ap-
plications of the plasma jet [37-43]. In 2002, Stoffels
et al. created a miniature atmospheric plasma jet that
they called plasma needle [44] and created a new version
in 2004 [45]. In the former version, the needle was
enclosed in a box and as a result, the samples had to be
placed inside of the box to be treated. In the new ver-
sion, the plasma needle consists of a 0.3 mm metal
strand diameter with a sharpened tip inside of a Perspex
tube. The length of the entire needle is 8 cm and 1.5 cm
remains uncovered by the Perspex tube. The gas used
most frequently is Helium due to its high thermal con-
ductivity. The gas is then mixed with air at the needle
tip where a micro discharge is created. Gases other than
Helium are also used [46]. The diameter of the plasma
glow generated is 2 mm. Microplasma is created when
RF power at 13.05 MHz ranging between 10 mW and
several watts is applied to the needle. Its small size en-
ables it to be used to treat small areas where accuracy is
ctrode Dielectric Barrier Discharge. A presents the formation of
g Electrode Dielectric Barrier Discharge (FE-DBD).



Figure 4 A schematic of the plasma pencil created by
Laroussi et al.
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required like in dentistry [47-52]. It has also been used
to deactivate E. Coli (Figure 3) [53].

Pulsed direct current-driven plasma jets
Laroussi et al. developed a miniature jet that they called
plasma pencil [54]. It consists of a dielectric cylindrical
tube of 2.5 cm in diameter where two disk electrodes of
the same diameter as the tube are inserted. The two
electrodes are separated by a gap (the distance can vary
from 0.3 to 1 cm) and consist of a thin copper ring at-
tached to a dielectric disk. To create the plasma, sub-
microsecond high voltage pulses are applied between the
two electrodes while a gas is injected through the holes
of the electrodes. When the discharge is created, a
plasma plume is launched through the hole of the outer
electrode into the air. Because the plasma plume (up to
5cm in length) remains at low temperature (290K), it
can be touched safely. The electrical power is supplied
to the electrodes by a high voltage pulse generator. The
high voltage is supplied to the pulse generator by a DC
voltage supply with variable output. The plasma pencil
has been used in the treatment of E. coli, Leukemia cells,
and P. Gingivalis [55-57]. Forster et al., Zhang et al., and
Wash et al. developed a plasma jet using a DBD config-
uration (Figure 4) [58-60].

Different components of plasma involved in sterilization
Laroussi et al. first demonstrated in 1996 that glow dis-
charge plasma generated at atmospheric pressure is a
very effective sterilization agent [61]. The reactive spe-
cies, charged particles, and UV photons are said to be
the major components involved in sterilization of a wide
range of gram-positive bacteria, gram-negative bacteria,
spores, biofilms, viruses, and fungi [62-64].

Effect of reactive oxidative species
According to several authors, reactive neutral species
such as Oxygen, Hydroxyl Radicals, and Nitrogen Diox-
ide play the main role in the use of plasma for
Figure 3 .Diagram of a Atmospheric Pressure Plasma Jet and a Plasm
in 1992 and B presents a schematic of the plasma needle created by Stoffe
sterilization purposes. In 1999, Herrmann et al. used
APPJ with and without oxygen. They observed that the
D value (the time needed to kill 90% of the microorgan-
isms) was higher when oxygen was absent [27]. Moreau
et al. concluded that oxygen played the main role in the
sterilization of Bacillus Subtilis [65] whereas Richardson
et al. also observed that adding oxygen to the discharge
gas helium made the device more effective at killing bac-
teria [66]. Kuzmichev et al. concluded that the best bac-
tericidal effects were found using moistened oxygen and
air.
Laroussi and Leipold used different gases to deactivate

Bacillus spores: either pure helium, a mix of 97% he-
lium/ 3% of oxygen, or air. They observed that the use
of pure helium resulted in a D value of over 20 minutes,
the use of the mixture of helium and oxygen resulted in
a D value of 10 minutes, and the use of air resulted in a
D value of 20 seconds [67]. The oxygen species were
found to play the major role in the sterilization process
due to their strong oxidative effects on the outer struc-
tures of cells [68].
Reactive Oxidative Species (ROS) was found to be the

major mechanism involved in the deactivation of
a Needle. A presents a schematic of the APPJ created by Schütze et al
ls et al in 2004.
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bacteria by the FE-DBD plasma [69]. They observed that
plasma generates ROS that causes morphological
changes of E. coli, depolarization of the membrane, lipid
peroxidation, and DNA damage in a dose dependent
manner. In this study they also used ROS scavengers
and found no inactivation of E. coli after the plasma
treatment. This confirms that ROS is the major compo-
nent involved in the sterilization process.

Effect of charged particles
Kelly-Wintenberg et al. employed an atmospheric pres-
sure glow discharge for the inactivation of Gram-
negative E. coli and used transmission electron micros-
copy (TEM) to visualize the plasma-induced physical
damage to the microorganism. Plasma exposure rapidly
disrupts the cell wall and leads to a release of cellular
contents in the surrounding medium [70].
Mendis et al. [71] and Laroussi et al. [72] suggested

that charged particles can play a significant role in the
rupture of the outer membrane of bacterial cells. They
showed that the electrostatic force caused by charge ac-
cumulation on the outer surface of the cell membrane
could overcome the tensile strength of the membrane
and cause its rupture. Nevertheless, it is more likely to
occur for gram-negative bacteria because of its irregular
cell surface. Laroussi et al. confirmed this by not observ-
ing any rupture of the cell of the gram-positive B. Subti-
lis. Furthermore, Fridman et al. showed that charged
particles play an essential role in sterilization, especially
when the plasma is in direct contact with the microor-
ganisms. They observed that a direct application of
plasma resulted in better sterilization efficacy. They con-
cluded that it might be possible that charge-induced
mechanisms contribute to the sterilization process in
direct plasma exposure [73]. Stoffels et al. confirmed
that charged particles play an important role [74].

Effect of UV radiation
According to the literature, the role of UV radiation in
the sterilization process is still unclear. The presence of
UV radiation in the plasma strongly depends on the op-
erating pressure. Vacuum plasma at very low pressure
discharges can produce UV radiation in the range of
wavelengths known to be involved in sterilization (200–
290 nm) [75].
Nevertheless, at atmospheric pressure, plasma does

not produce UV radiation in adequate wavelengths to
produce sterilization. In 1996, Laroussi et al. compared
the efficacy between sterilization with UV radiation pro-
duced by a low-pressure mercury vapor lamp versus
glow discharge plasma at atmospheric pressure. They
concluded that UV radiation was not the first agent in-
volved in the sterilization process at atmospheric pres-
sure [61]. Choi et al. and Laroussi et al. measured the
wavelengths of UV radiation produced at atmospheric
pressure. Choi et al. treated samples with a DBD oper-
ated in air at atmospheric pressure and did not observe
any UV radiation below 290 nm [76]. Laroussi et al. did
not observe any UV radiation in the wavelength of 200–
285 nm after using the flowing afterglow of a DBD in air
at atmospheric pressure on spores of B. genus [68].
Kelly-Wintenberg et al. exposed several microorgan-

isms to an atmospheric pressure glow DBD in air. Ac-
cording to the authors, the time needed to deactivate the
microorganism was the same if the samples were in
opaque bags or not, negating that deactivation was due
to UV radiation [77]. Herrmann et al. treated Bacillus
globigii with an atmospheric pressure plasma jet operat-
ing in helium/oxygen mixtures and blocked the reactive
species produced with a quartz window in order to allow
only UV radiation to be in contact with the spores. They
did not observe any significant decrease in the number
of bacteria after treatment [27]. Birmingham et al. tested
a plasma blanket and noticed that the plasma blanket
does not generate sufficient photons of the appropriate
wavelength and therefore concluded that the deactiva-
tion of the bacterial spore was not the result of the UV
radiation [78]. In the plasma needle created in 2004 by
Stoffels et al., UV emission was quantified between 250
and 400 nm with the highest intensities between 305
and 390 nm. At these wavelengths, the damage to cells
and tissues is limited [45]. Kostov et al. also concluded
that UV radiation does not play any significant role in
the sterilization process [79]. The preponderance of the
studies suggests that UV radiation does not contribute
significantly to the sterilization process.
Nevertheless, some authors do mention the possible

role of UV radiation in plasma sterilization at atmos-
pheric pressure. Trompeter et al. [80] and Heise et al.
[81] both used argon plasma and concluded the inactiva-
tion of spores was due to UV radiation. Park et al., Lee
et al., and Boudam et al. also claimed that UV radiation
has a main role [82-84]. Further studies are required to
investigate and clear up these controversies in the
literature.

CAP in dentistry
The mouth is a microbial habitat with over 700 species
that live in harmony with the human body [85]. How-
ever, periodontal disease and caries are the two most
common diseases in dentistry. Every year, $60 Billion is
spent in the United States to treat dental disease. Dental
caries are defined as the localized destruction of tooth
tissue by the acids produced by bacteria. [86]. Caries
start with small demineralization areas under the en-
amel. The demineralization can progress through the
dentine and to the pulp (Figure 5). S. mutans is one of
the major causes of caries [87]. Before filling cavities,
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necrotic, infected, and demineralized tissue is removed
by using ozone treatment, mechanical drilling, or laser
techniques [88-95]. Unfortunately, these methods can be
destructive as they might remove an excess of healthy
tissue to make sure that the cavity is bacteria free. Peri-
odontal disease is related to dental plaque, which is a
complex oral biofilm with several microbial species orga-
nized in communities [96]. It leads to the detachment of
the gum from the tooth as a result of inflammation,
which is the body’s natural response to dental plaque.
Several authors have been studying possible use of CAP
on dental bleaching, dental disinfection, biofilm removal,
instrument sterilization, and composite restoration (See
list of different uses of CAP in dentistry section).
Figure 5 The different components of a tooth [153].
List of different uses of CAP in dentistry
Deactivation of Biofilms-

� S. mutans [97]
� B. cereus and G. Stearothermophilus [98]
� L. acidophilus and S. mutans [99]
� P. Gingivalis [57]
� S. mutans [100]
� Root canal disinfection [101]
� E. coli, L. casei, S. mutans and C. albicans on agar
and dentine plates [102]

� E. faecalis in the root canal [103]
� Ex-vivo biofilms on root canals of extracted teeth [50]

Tooth Bleaching-
� Hydrogen Peroxide + CAP enhanced the tooth
bleaching [104-109]
� CAP + saline [110]
� Carbamide Peroxide + CAP [111]
� Plasma plume + 36% H2O2 gel on extracted teeth
[112]

Instrument Sterilization-

� Removal of biofilms on microstructures titanium
[113,114]

� Dental instruments [115]
� Ti discs inoculated with biofilms [116]

Composite Restoration-

� CAP treatment increases dentin/adhesive interfacial
bonding [117]

� CAP treatment improves the tensile-shear bond
strength between post and composite [118]

Use of CAP on oral pathogens
A promising application of CAP in dentistry is the disin-
fection of dental cavities due to its high efficiency at de-
activating biofilms. It could offer a less destructive
method to prepare dental caries for filling. Since it
operates at room temperature, it does not cause any pain
or destruction of the tissue. Cold Atmospheric Plasma
could also be used for the treatment of periodontal dis-
ease based on its microorganism deactivation property.
CAP has been shown to be effective at deactivating

biofilms. Goree et al. investigated using a plasma needle
to kill S. mutans, which is the main microorganism
causing dental caries [97]. They observed that the
plasma needle could kill these bacteria after 10 seconds
of treatment. They concluded the plasma needle could
provide an attractive alternative for dental clinical treat-
ment. Morris et al. used CAP to deactivate Geobacillus
stearothermophilus and Bacillus cereus microorganisms
[98]. B. cereus, a gram-positive microorganism, has
been associated with periodontal disease and food poi-
soning. G. stearothermophilus is used as a biological in-
dicator of treatment efficacy in sterilization studies. Both
of the microorganisms were in vegetative cells and
spores and were treated either with direct or indirect
plasma. They concluded that cold plasma is effective in
killing B. cereus vegetative cells and spores at various
time points. G. stearothermophilus vegetative cells were
killed with direct and indirect exposure to plasma. In
2011, Yang et al. used a cold atmospheric argon plasma
brush to deactivate oral bacteria of Streptococcus mutans
and Lactobacillus acidophilus [99]. They observed that
the argon plasma brush was effective at killing bacteria.
Between 11 and 15 seconds (depending on the bacterial
supporting media) was needed to deactivate S. mutans. A
little more time was needed to deactivate L. acidophilus:
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up to 5 minutes, depending on the bacteria supporting
media.
Mahasneh et al. used Low Temperature Atmospheric

plasma to kill Porphyromonas gingivalis, which is a peri-
odontal pathogen associated with periodontal disease
[57]. The plasma pencil created by Laroussi et al. was
used for the experiment. They observed a significant in-
crease in a dose dependent manner in the inactivation of
P. gingivalis in the treatment group compared with con-
trol. Kang et al. used RF atmospheric plasma to inacti-
vate Streptococcus mutans [100]. The gas used was a mix
of Argon and Hydrogen Peroxide. They observed that
the inactivation efficacy was highly dependent on the
Hydroxyl radical concentration. Moreover, by adding
hydrogen peroxide to the gas, they decreased the ozone
formation that is naturally formed in CAP. Ozone has
bactericidal properties, but is toxic which is a disadvan-
tage for the use in the clinic.
CAP was also effective at destroying biofilms either on

root canals or on dental slices. Jiang et al. developed a
plasma plume at room temperature [102]. They used it
to disinfect root canals from extracted human teeth.
Two teeth were placed at a distance of 5 mm from the
plasma nozzle. One of them was exposed to the helium/
oxygen plasma for 5 minutes, whereas the other one was
exposed to the same helium/oxygen flow for five mi-
nutes, but without plasma. They observed better results
in the reduction of the biofilms in the tooth treated with
plasma compared with control. Nevertheless, the plasma
failed to reach the lower zone of the tooth. The authors
explained it by the fact that the plasma plume did not
have the optimal width and length to effectively treat the
lower zone.
Rupf et al. used a CAP jet to kill adherent oral mi-

crobes, known to cause dental carries [102]. The gas
mixture used was Helium, Oxygen, and Nitrogen. Four
microorganisms were used: E. coli, L. casei, S. mutans,
and C. albicans. These microorganisms were placed on
agar plates and on Dentin slices. The plasma treatment
showed antimicrobial efficacy against all of the organ-
isms. The antimicrobial efficacy was better on agar
plates than on dental slices. Moreover, S. mutans, a
gram-positive bacteria, showed the strongest resistance
to plasma-jet treatment.
Lu et al. used a plasma-jet device, which could generate

plasma inside the root canal [103]. They used it on Entero-
coccus faecalis, which is one of the most important bac-
teria causing failure of the root-canal treatment. Owing to
its low temperature, the plasma could be touched and
placed into the root canal without any pain. A mix of He-
lium & Oxygen was used. They observed that the plasma
jet was efficient at deactivating Enterococcus faecalis.
In 2013, Schaudinn et al. used a plasma needle to

eliminate ex vivo biofilms on root canals of extracted
teeth [50]. They divided the teeth into three groups:
treatment with the plasma needle, treatment with 6% so-
dium hypochlorite (an antiseptic), and control. They
concluded that the plasma needle was effective at killing
biofilms in extracted teeth. However, using 6% sodium
hypochlorite is more efficient.
Tooth whitening
Researchers have been interested in the use of CAP in
tooth whitening. Hydrogen peroxide is currently used to
whiten teeth [104]. Hydroxyl radicals generated from
Hydrogen peroxide play the main role in tooth bleaching
[105]. Some researchers looked for an alternative treat-
ment and found CAP to be an interesting candidate.
They either used it in complement with the hydrogen
peroxide treatment or alone. Lee et al. used an atmos-
pheric pressure plasma jet for tooth bleaching [106]. The
carrier gas used was Helium. 28 extracted teeth were
used for the experiment. All of them were cut in half
longitudinally and all the pieces were placed in two
groups. The dentin and the tooth surface of the treat-
ment group received H2O2 + Plasma for 10 minutes
while the dentin and the tooth surface of the control
only received H2O2 for the same amount of time. The
results showed a three fold improvement in tooth
bleaching of the treatment group compared with control.
The greater efficacy of tooth bleaching in the treated
group compared with control was reported to be due to
both the removal of the tooth surface protein and the
double concentration of Hydroxyl radicals.
Lee et al. also investigated bleaching of teeth stained

with coffee or red wine. Using plasma with hydrogen
peroxide improved the bleaching efficacy by a factor of
3.7 for teeth stained with red wine and 3.1 for teeth
stained with coffee compared with using hydrogen per-
oxide alone [107]. Sun et al. also concluded that using
plasma with hydrogen peroxide enhanced tooth whiten-
ing compared to hydrogen peroxide alone [108]. Pan
et al. created a new method of tooth whitening by using
a Cold Plasma Microjet driven by Direct Current at At-
mospheric Pressure [109]. 60 teeth were chosen and
were randomly divided into three different groups. In
the first one, the teeth were exposed to a saline solution
and airflow for twenty minutes. In the second group, the
teeth were exposed to the plasma and saline solution for
twenty minutes. In the last group, the teeth were ex-
posed to hydrogen peroxide gel at room temperature for
the same duration of time. They observed that the
whiteness of the teeth of the plasma treated group was
significantly improved compared to the first and the last
group. They suggested that the Reactive Species formed
at the plasma-liquid-tooth interface was the cause for
greater tooth whitening.
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Park et al. demonstrated the effect of CAP on an intra-
coronal tooth stained with blood [110]. They extracted
single root human teeth and cavities were created artifi-
cially. The teeth were then artificially stained by
hemoglobin-rich hemolysed blood. Two groups were used.
The control group was treated with 30% hydrogen perox-
ide in the pulp chamber for 30 min and the experimental
group was treated with 30% hydrogen peroxide with CAP.
The bleaching efficacy of the treated group was approxi-
mately 2 fold better than that of the control group.
Tooth bleaching agents are mostly based on hydrogen

peroxide and carbamide peroxide where light sources
can be used in combination. Light sources can increase
the effectiveness of the tooth whitening. Nam et al. used
a Plasma jet on forty extracted human molar teeth with
intact crowns [111]. The forty teeth were randomly di-
vided into four groups (n=10) and were treated with
Carbamide peroxide + CAP, Carbamide peroxide +
Plasma Arc Lamp (PAC), Carbamide peroxide + diode
laser, or Carbamide Peroxide alone (control). They ob-
served CAP was the most effective at bleaching teeth.
Moreover, they observed that CAP does not damage the
tooth due to its low temperature.
Laroussi et al. used a plasma plume on thirty extracted

human teeth randomized into two groups: Group I re-
ceived plasma plume + 36% H2O2 gel for 10, 15 and
20 min and Group II received 36% H2O2 gel only for the
same time duration [112]. They observed a statistically
significant increase in the whitening of the teeth after
exposure to CAP + 36% H2O2 gel, compared with 36%
H2O2 only, in the 10 and 20 min groups. The
temperature in both treatment groups remained under
80°F throughout the study, which is below the thermal
threat for vital tooth bleaching.

Sterilization of dental instruments
Autoclaves and UV sterilizers are currently used to
sterilize dental instruments. To develop a dental steril-
izer that can sterilize most materials including metals,
rubber, and plastics, researchers have investigated CAP
as a universal sterilizer. Rupf et al. employed a CAP jet
to remove biofilms on micro-structured titanium [113].
They created biofilms by intraoral exposure on micro-
structured titanium discs. A mini plasma device 1.5 cm
wide and 2.5 cm tall was used with helium as the carried
gas. By using fluorescence microscopy and Scanning
Electron Microscopy (SEM) they observed a complete
disinfection of the biofilms with a single plasma treat-
ment. Nevertheless, a combination of plasma with air/
surface spray resulted in a complete biofilm removal.
Using an extra plasma treatment at the end even in-
creased the probability of the complete removal of the
biofilm. They also showed that plasma was superior to
chlorhexidine in biofilm removal.
Koban et al. used CAP on biofilms of Streptococcus
mutans and saliva multispecies grown on titanium discs
in vitro. They compared the efficacy of sterilizing the
disks with CAP and sterilizing with chlorhexidine diglu-
conate [114]. In contrast to Chlorhexidine digluconate
(CHX), a mouth rinse solution used in dental clinics,
treatment with CAP was very effective against S. mutans
and multispecies saliva biofilms.
Sung et al. also used CAP to assess the sterilization ef-

fect on dental instruments [115]. They inoculated B.
subtilis and E. coli on diamond burs and polyvinyl silox-
ane materials. Then they exposed them to the plasma
for a different length of time (from 30 to 240 seconds).
They compared the plasma device efficacy with the UV
sterilizer. The plasma device decreased the colony-
forming unit (CFU) for both E. coli and B. subtilis sig-
nificantly on both diamond burs and polyvinyl siloxane
materials. The atmospheric pressure of non-thermal air
plasma showed better sterilization rates than the UV
sterilizer.
Idlibi et al. treated Ti discs inoculated with biofilms

with CAP [116]. The biofilms were divided randomly
among the following treatments: CAP, diode laser, air-
abrasion, and chlorhexidine. They observed CAP treat-
ment decreased the quantity of the biofilms the most
among all the treatments. Nevertheless, CAP did not
succeed in completely removing the biofilms.

Dental composites
Dental composites are currently used to fill cavities.
Some researchers investigated CAP in composite resto-
rations. The plasma generates reactive species that arrive
on the surface of the composite resulting in both micro-
structural and surface chemistry modifications that im-
prove adhesive bonding. They observed plasma
treatment increases bonding strength at the dentin/com-
posite interface that enables it to last longer on teeth.
Ritts et al. investigated a non-thermal atmospheric

plasma brush on dental composite restoration [117].
They observed that atmospheric cold plasma brush
(ACPB) treatment could modify the dentin surface and
increase dentin/adhesive interfacial bonding. Yavrich
et al. studied the effects of plasma treatment on the
shear bond strength between fiber reinforced composite
posts and resin composite for core buildup and con-
cluded that plasma treatment appeared to increase the
tensile-shear bond strength between post and compos-
ites [118].

Effects of CAP on malignant cells
CAP and mammalian cells
Few studies have been performed on the effect of CAP
on eukaryotic cells thus far. Eukaryotic cells are defined
as cells where the genetic material is inside the nucleus.
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Some researchers observed either cell detachment, de-
crease of cell migration, apoptosis, or necrosis on several
types of cells depending on the power and the time of
exposure to plasma. Necrosis is defined as an unpro-
grammed death of cells in living tissue. This leads to in-
flammation by releasing intracellular content. In
contrast with necrosis, apoptosis is a programmed cell
death process resulting in no inflammation. Different
groups have conducted in vitro experiments with fibro-
blasts, endothelial cells, ovarian cells, human hepato-
cytes, and smooth muscle cells. Stoffels et al. used a
plasma needle on Chinese Hamster ovarian cells and ob-
served different results depending on the power and the
time of exposure. For exposure times longer than 10s
and powers higher than 0.2W, necrosis was observed.
With lower doses of exposure to the plasma, apoptosis
was observed. With power level at about 50 mW and an
exposure time of 1s, the cells detached from the sample
without undergoing apoptosis [119]. Yonson et al. [120]
also showed detachment of human hepatocytes (HepG2)
after CAP treatment. Shashurin et al. used a plasma jet
on fibroblast cells and observed cell detachment at
medium plasma treatment levels [121]. Kieft et al. [122]
induced apoptosis in 3T3 mouse fibroblast cells and in
another study they used a plasma needle for treatment
of mammalian endothelial and smooth muscle cells. At
lower doses cell detachment was observed while at
higher doses necrosis was observed [123]. Some re-
searchers observed that CAP decreases cells migration
of both fibroblasts and epithelial cells by increasing in-
tegrin activation [124].
CAP and malignant cells
Because of the effect of CAP on mammalian cells, re-
searchers have been interested in using it on malig-
nant cells also. The conventional therapies for
cancerous diseases are based on removal of the
tumor, chemotherapy, or radiation. Nevertheless some
cancers remain hard to eradicate. In-vitro and in-vivo
studies have been performed on the efficacy of CAP
at killing cancer cells. The results of the pilot studies
performed by several research groups confirmed that
treatment with low-temperature plasma is able to in-
duce several modes of cell death including apoptosis
and necrosis. They also noticed decreased cell migra-
tion and induction of senescence in cancer cells. Re-
garding the mechanism of the Atmospheric Pressure
Plasma therapy on cancer cells, the hypothesis is that
the ROS plays the main role. ROS are well known to
be harmful to cells inducing apoptosis, senescence, or
cell cycle arrest [125]. Sensenig et al. proposed that
ROS is the mechanism through which CAP induces
apoptosis [126].
Effect of CAP on various cancers
A few in vitro and in-vivo studies have been published
by researchers regarding CAP use in cancer. In an
in vitro study, Fridman et al. used a FE-DBD plasma
treatment to treat Melanoma cancer cells [20]. They ob-
served either apoptosis or necrosis depending on the
dose of the treatment. Melanoma cells, treated by
plasma at low dose, developed apoptosis several hours
post treatment. At higher dosage, melanoma cells devel-
oped necrosis. Apoptosis was also observed on cultured
human breast cancer cells treated with a pulsed atmos-
pheric pressure plasma jet used with Heliox [127]. At
low plasma dosage apoptosis was observed while at a
higher dose, necrosis was observed. Thiyagarajan et al.
observed that CAP can cause cell death in leukemia can-
cer cells (THP-1 cells), and there is a dose dependent re-
sponse in the induction of cell death. They also observed
that higher treatment doses cause necrosis, while lower
treatment doses induce apoptosis [128]. In 2012, Par-
tecke et al. observed Tissue Tolerable Plasma (TTP)
treatment significantly induces apoptosis in pancreatic
cancer cells in vitro, with treatment duration of 10 sec-
onds showing the strongest effect [129].
Walk et al. used a CAP on neuroblastoma cells

in vitro [130] and concluded that CAP decreases meta-
bolic activity, induces apoptosis, and reduces numbers of
viable cancer cells in direct proportion to the duration
of treatment. Kaushik et al. used an Atmospheric Pres-
sure non-thermal plasma jet on T98G brain cancer cells
[131]. They observed the mortality percent of T98G cells
directly depends on exposure time. As plasma exposure
increases, the plasma treatment increases cell death and
inhibits the colony formation capability of the T98G cell
population. They observed that plasma treatment in-
hibits the colony formation capabilities of T98G cells at
all doses.
Glioblastoma is the most aggressive brain tumor in

adults. Therapy with Temozolomide (TMZ) is efficient
only when patients have methylation of the MGMT gene
in the tumor. Köritzer et al. used plasma produced on a
Surface Micro-Discharge (SMD) electrode on the human
glioblastoma cell lines LN18, LN229 and U87MG [132].
The cell lines U87MG and LN229 do not express the
MGMT protein, while the cell line LN18 expresses the
MGMT protein. TMZ was also used as a treatment on
the human glioblastoma cell lines either alone or in
combination with CAP. They observed TMZ was only
efficient on the cell lines with MGMT when used alone.
They observed that previous CAP treatment restores the
sensitivity of TMZ resistant glioma cells. 60 seconds of
CAP treatment combined with 100 mM or 200 mM
TMZ showed a statistically significance increase in indu-
cing a cell cycle arrest in G2/M phase compared with
TMZ treatment alone.
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Laroussi et al. used a plasma pencil on non-adherent
leukemia cancer cells and Helium was the carrier gas
used [133]. CCRF-CEM cells, which are non-adherent
leukemia cancer cells, were suspended in media solution
and treated with CAP for 0–10 minutes. They observed
a dose dependent response in the induction of cell death.
They suppose that a longer exposure to plasma results
in an increase in the reactive species formation. The de-
layed effect of plasma exposure on leukemia cells might
be attributed to the initiation of an intracellular signaling
cascade that leads to programmed cell death.
Some researchers have studied the effect of CAP on

the invasion activity in colorectal cancer [134]. They
concluded that CAP significantly inhibited cell migration
and invasion in SW480 colorectal cancer cells. However,
the best results were when they were treated with a mix
of Helium plus Oxygen compared to control or Helium
only. They also observed that increasing plasma voltage
improves the results.
Cold atmospheric plasma can be used as a new strat-

egy to induce senescence in melanoma cells [135]. Some
researchers used a ‘miniFlat-Plaster’ that uses the flexible
and scalable Surface Micro Discharge (SMD) technology
for plasma production in air. Melanoma cells were
treated for either one or two minutes. Two minutes of
CAP treatment resulted in about 50% apoptosis in mel-
anoma cancer cell lines. On the contrary, 1 min of CAP
treatment was not enough to induce apoptosis, but it
created senescence (a permanent cell cycle arrest, con-
sidered as a good mechanism which prevents aged or
abnormal cells from expansion) and as a result stopped
proliferation. Kim et al. used Atmospheric non-thermal
plasma to treat HCT-116 colorectal cancer cells and also
observed CAP induced cell growth arrest and apoptosis.
Moreover, plasma reduced cell migration and invasion
activities [136].

In-vivo studies on the use of CAP in cancer
Walk et al. performed an in vivo study of neuroblastoma
cells injected in mice [130]. Mice were injected with
Neuro2a cells and treated with CAP. 7 treated mice re-
ceived 5 min of CAP while 7 control mice received no
therapy after inoculation. CAP initially ablated the tu-
mors. Although tumors recurred in some mice, their
Table 1 In vitro and in vivo studies performed in Oncology w

Studies performed
in Oncology

Types of cancer

In vitro studies Melanoma cells [20], Human Breast cancer cell
Neuroblastoma cells [130], T98G brain cancer c
CCRF-CEM cells (non-adherent leukemia cells)
Colorectal cancer cells (HCT-116 cells) [135], lun
lung carcinoma cells [145], Murine melanoma
Lung cancer cell lines (H460 and HCC1588) [14

In vivo studies Pancreatic tumor [129], Neuroblastoma [130], M
growth rate was decreased and median survival of the
mice in the treatment group was almost two fold from
15 to 28 days. CAP treatment resulted in a dramatically
improved survival compared to the control group.
In another in-vivo study, Kim et al. demonstrated no

initial reduction in melanoma size, but did show CAP's
ability to inhibit tumor growth in mice [137]. Female
mice between 6 and 8 weeks old were subcutaneously
injected with B16F0 cells. After tumors reached a size of
about 40 mm3, the mice were treated with a micro-
plasma for 5 seconds each either one time or four times
for four consecutive days. They then measured the
length and width of the tumors every 2 to 3 days and
they calculated the tumor volume. They observed no an-
titumor effect for the one-time treatment. However, the
four-time treatment was effective at inhibiting tumor
growth (Table 1).
Vandamme et al. used FE-DBD plasma on U87-

bearing mice [138]. They started the treatment when the
tumor reached 150 ± 50 mm3 corresponding to Day 0.
Mice received a daily plasma treatment for 6 minutes for
five consecutive days. At day 6 they measured the tumor
volume and observed a significant reduction of 56% for
the treatment group compared with the control. They
also performed a bioluminescence imaging (BLI) of the
tumor on Day 0 (D0) and Day 6 (D6). They calculated
the ratio D6/D0 of BLI intensity, corresponding to the
tumor activity between the beginning and the end of the
treatment. They observed in the control group a 24-fold
BLI intensity increase, whereas in the treatment group,
BLI intensity only increased sevenfold. They also evalu-
ated the long-term effect of the plasma treatment. After
plasma completion, tumors started to grow again, but
slowly compared with the control group. They also ob-
served a decrease in mortality for the treatment group of
58%. These results showed significant anti-tumor prop-
erty of the CAP treatment.
Keidar et al. applied a plasma jet to 10 nude mice

bearing subcutaneous bladder cancer (SCaBER) and to 8
mice with B16 melanoma cells. In the bladder cancer
group, they observed that a single treatment with CAP
of 5 minutes led to tumor ablation. They also observed
that tumors of about 5mm in diameter are ablated after
2 min of single time plasma treatment, whereas larger
ith CAP

s [127], Leukemia cells (THP-1 cells) [128], Pancreatic cancer cells [129],
ells [131], human glioblastoma cell lines LN18, LN229 and U87MG [132],
[133], Colorectal cancer cells (SW480 cells) [134], Melanoma cells [135],
g cancer (SW900) cell lines and murine melanoma cells [143], TC-1
B16F0 tumor cells [144], B16 cancer cells and COLO320 cancer cells [144],
5]

elanoma [137], Glioma [138], Bladder cancer tumor and melanoma [139]
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tumors decreased in size. Moreover, the ablated tumors
did not grow back, while partially removed tumors
started growing back a week after treatment without
reaching the original size even after 3 weeks post-
treatment. They also observed good outcomes for the
mice inoculated with melanoma. After the treatment
with CAP for five minutes, they observed the tumor
growth rates were markedly decreased and the median
survival was 33.5 days while it was of 24.5 days for the
control group [139].
Partecke’s in-vivo experiment using TTP induced

apoptosis only in the top cell layers of pancreatic tumor
showing a depth of effective tissue penetration of up to
60μm [129]. Some improvement needs to be done to
enable plasma to reach deeper in the tumor.

CAP in cancer therapy conjugated to gold nanoparticles
Kim et al. created a novel approach to treat cancerous
cells by incubating cancer cells with gold nanoparticles
making them more vulnerable to CAP treatment. They
bound Gold nanoparticles (GNP) to G361 melanoma
skin cancer cells with an anti-FAK antibody. FAK anti-
body is a protein overexpressed in G361 melanoma cells
compared to normal tissues. They observed a five-fold
improvement of melanoma cell death over using plasma
alone by using air plasma with gold nanoparticles bound
to anti-FAK antibodies [140]. Later, they investigated the
effect of GNP conjugates with anti-EGFR antibody and
anti-TFR antibody treated with CAP for the selective
treatment of cancerous cells [141]. Epidermal growth re-
ceptor (EGFR) and transferring receptor (TFR) are over-
expressed in several oral cancer cells. Therefore, anti-
EGFR antibody and anti-TFR antibody were conjugated
to GNPs for targeting oral cancers. They observed a sig-
nificant improvement of oral carcinoma cell death over
using plasma alone by using CAP with bound nanoparti-
cles to anti-EGFR antibody or anti-TFR antibody.

CAP selectivity of cancer cells
Despite the good results observed on in vitro and a few
in vivo studies, more work is required to make CAP use-
ful in the clinic. Finding a therapy for cancer remains
challenging because it has to selectively attack only the
cancer cells and let the normal cells live. Some re-
searchers found that the cancer cells are more sensitive
to CAP treatment than normal cells, which could make
CAP an ideal cancer therapy.
Volotskova et al. showed that the cancer cells are more

susceptible to the effects of CAP because a higher per-
centage of cells are in the S phase of the cell cycle [142].
The cell cycle is defined as a series of events that takes
place in a cell leading to its division and replication. The
cell cycle consists of four different phases: G1, S (Syn-
thesis of DNA), G2 (Interphase) and M phase (Mitosis).
Between S and G2 phases and between G2 and M
phases we can find checkpoints that check if the pro-
cesses at each phase of the cell cycle have been accur-
ately completed before progressing into the next phase.
Volotskova et al. found that CAP delayed progression of
skin cancer cells by hindering them at the checkpoint
between G2 and M phases. It correlated with the in-
crease of cH2A.X that is a marker showing damage in
the S phase of the cycle.
Keidar et al. used CAP in vitro on normal human

Bronchial epithelial cells (NHBE), lung cancer (SW900)
cell lines, murine melanoma cells, and primary macro-
phages. They observed cell detachment of 60–70% of
SW900 cancer cells treated with plasma, while no de-
tachment was observed in the treated zone for the nor-
mal human Bronchial epithelial cells (NHBE). Plasma
treatment leads to a significant reduction in SW900 cell
number, whereas NHBE cell count remains almost the
same. Concerning the murine macrophages and B16
melanoma cells, they observed plasma selectivity for
murine melanoma cancer cells while murine macro-
phages were not affected [139].
Kim et al. used a microplasma jet device on mouse

TC-1 lung carcinoma and CL.7 fibroblast cells. They ob-
served more apoptotic activity in TC-1 lung carcinoma
cells compared with the CL.7 fibroblast cells treated with
the same dosage and same duration. They concluded
that the TC-1 tumor cells are more sensitive to plasma
treatment than CL.7 fibroblast cells under these experi-
mental conditions. They even noticed for certain plasma
dose conditions, the microplasma jet induced only apop-
tosis of the TC-1 lung carcinoma cells. This micro-
plasma could be used to selectively kill TC-1 lung
carcinoma cells [143]. In another study, they also used a
micro-plasma to treat both Murine melanoma B16F0
tumor cells and murine fibroblast CL.7 cells for 0–20
seconds respectively [144]. They observed the murine
melanoma tumor cells were more sensitive to plasma
treatment than murine fibroblast cells under specific
plasma dose conditions. The plasma treatment induced
more apoptosis in B16F0 tumor cells than in CL.7 cells
when the treatment was lower than 20 seconds.
Gweon et al. used a microplasma jet on both meta-

static cancerous SK-HEP-1 and normal THLE-2 cells for
a duration of two minutes with Helium as a carrier gas
[145]. They observed that the cancer cells had a better
ability to detach compared to normal cells after treat-
ment. According to the biochemical and biophysical as-
says, cancer cells seemed to have weaker adhesion and
different responses against plasma treatment compared
to the normal cells.
Georgescu et al. observed no apoptosis in macrophage

cells treated with CAP while apoptosis was observed on
B16 cancer cells and COLO320 cancer cells [146]. Amdt
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et al. also observed that normal melanocytes are less
sensitive to CAP therapy in comparison with tumor cells
derived from primary or metastatic melanomas [135].
Panngom et al. treated Lung cancer cell lines (H460 and

HCC1588) and lung normal cell lines (MRC5 and L132)
with non-thermal DBD plasma [147]. They observed
higher apoptotic cell death in lung cancer cell lines than
that in lung normal cell lines treated with plasma.

Molecular mechanism of the action of CAP on cancer cells
Tuhvatulin et al. have been interested in the mechanism
involved in the cell death after plasma exposition. They
observed that CAP treatment of human colon carcinoma
cells (HCT116) induces activation of protein p53, known
to initiate cell death via the p53-dependant pathway.
They found that the activation of caspase 3 depends on
the presence of p53. They concluded that treatment of
human colon carcinoma cells by CAP results in apop-
tosis dependent of p53 [148]. Nevertheless, more studies
need to be performed regarding the type of damage in
cells resulting in p53 activation.
Yan et al. observed plasma treatment increases the

percentage of apoptotic cells being associated with cell
cycle arrest at the G2/M phase. They found the expres-
sion of the p21 CDK inhibitor (cell cycle inhibitor) and
the protein p53 are increased [149].
Vandamme et al. treated human glioblastoma

(U87MG) and human colon carcinoma (HCT-116) cells
with CAP. They observed that CAP generated a large
amount of reactive oxidative species (ROS) that is the
main cause of cell death. After CAP treatment a cell
cycle arrest in S and G2/M phase was observed. DNA
damage is observed 1 hour after treatment, suggesting
this is a consequence of the treatment. They concluded
that formation of DNA damages in treated cells leads to
cell cycle arrest and finally to apoptosis [150]. They also
conducted an in vivo experiments on U87MG (human
glioblastoma cells) bearing mice and observed a signifi-
cant inhibition of tumor growth (40%) at the end of the
treatment compared with control group [138]. They hy-
pothesized that DNA strand break formation mediates
accumulation of tumor cells in S phase causing apop-
tosis in the whole tumor. It suggests that plasma compo-
nents either penetrate in the tissue or induce ROS
release inside of the tissue. It is encouraging, but the
exact mechanism remains unclear.
Ahn et al. observed that treatment with nitrogen gas

(N2) and air plasma jet induced apoptosis via ROS gen-
eration and dysfunction of mitochondria in human cer-
vical carcinoma (HeLa) cells [151]. They used a plasma
jet with either air or N2 on human cervical carcinoma
HeLa cells. The cells were treated for 2 to 8 minutes.
They observed N2 and air plasma jets induce apoptosis
in a dose-dependent manner. The level of ROS increased
by approximately 2-fold and 2.6-fold in HeLa cells
treated with N2 and air plasma jets, respectively, com-
pared with untreated cells. Interestingly, they observed
depolarization of the mitochondrial membrane potential
which is an early event of apoptosis. The depolarization
results in mitochondrial membrane permeability, and as
a result releases proapoptotic factors. They noticed a de-
crease of the apoptotic effect of the CAP by using scav-
engers of ROS. It suggests that the apoptotic effects of
the plasma jet may be mediated by ROS. By using
caspase-3 and caspase-9 inhibitors, they also noticed a
diminution of cell death showing the potential involve-
ment of mitochondria in apoptosis.
Panngom et al. also concluded that mitochondria may

be involved in the apoptosis process following lung can-
cer cells exposure with non-thermal DBD plasma [147].
They observed that Mitochondrial Membrane Potential,
mitochondrial enzyme activity and respiration rate were
significantly decreased in cancer cells with CAP treat-
ment compared with the normal lung cells treated with
plasma. They also observed an alternation of the morph-
ology of mitochondria.
Yan et al. proposed a mechanism of action of CAP on

cancer cells in 2012 [152]. They observed CAP can con-
trol the intracellular concentrations of ROS, NO, and
lipid peroxide. They showed that the concentrations of
ROS, NO, and lipid peroxide are directly related to the
mechanism of liver hepatocellular carcinoma (HepG2)
cell death, which involves several steps. First, the plasma
generates NO species, which increases the NO concen-
tration in the extracellular medium. Then, due to a dif-
fusion process, the intracellular NO concentration
increases which leads to the increase of the intracellular
ROS concentration. Finally the oxidative stress creates
lipid peroxidation that injures the cell. The combined
action of NO, ROS, and lipid peroxide species results in
HepG2 cell death. The increased concentrations of NO,
ROS, and lipid peroxide during the plasma exposure
correlated with the decreasing numbers of viable cells.
(See list of mechanisms of CAP on cancer cells).

List of mechanisms of CAP on cancer cells

� Activation of p53 protein [148]
� Activation of p21 CDK inhibitor [149]
� Cell cycle arrest at the G2/M and S phase
[142,149,150]

� ROS leads to DNA damages leading to cell cycle
arrest [150]

� Apoptosis induced via ROS generation and
dysfunction of mitochondria [151]

� Mitochondrial Membrane Potential, mitochondrial
enzyme activity and respiration rate are significantly
decreased in cancer cells after CAP treatment [147]
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� CAP can control the intracellular concentrations of
ROS, NO, and lipid peroxide [152]

The exact mechanism of action of CAP on cells still
remains unclear. What cell signals CAP induces has not
been clarified so far. A better understanding regarding
the signaling events induced by CAP treatment on cells
is required to find the optimal dose and type of plasma
to be used successfully in the clinic.

Conclusion
CAP has a bright future in dentistry and oncology due
to its anti-microbial properties and its cell death proper-
ties on cells. Concerning dentistry, studies of CAP
showed promising results in tooth bleaching, deactiva-
tion of biofilms in teeth, instrument sterilization, and in
composite restoration. Nevertheless, progress needs to
be made concerning the ideal width and depth of the
plume of plasma to enable the treatment to reach lower
in teeth. Promising findings obtained from in vivo and
in vitro studies of CAP in oncology show that CAP will
find its niche in the treatment of cancer patients in the
future. However, more studies need to be performed re-
garding the mechanism of action.
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