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Abstract

Background: The hydrogen sulfide-releasing sildenafil, ACS6, has been demonstrated to inhibit superoxide
formation through donating hydrogen sulfide (H,S). We have found that H,S antagonizes homocysteine-induced
oxidative stress and neurotoxicity. The aim of the present study is to explore the protection of ACS6 against
homocysteine-triggered cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells.

Methods: Cell viability was determined by Cell Counting Kit-8 assay. Cell apoptosis was observed using the
chromatin dye Hoechst 33258 and analyzed by Flow Cytometry after propidium iodide staining. Mitochondrial
membrane potential was monitored using the fluorescent dye Rh123. Intracellular reactive oxygen species were
determined by oxidative conversion of cell permeable 2',7-dichlorfluorescein-diacetate to fluorescent 2’7
dichlorfluorescein. The expression of cleaved caspase-3 and bcl-2 and the accumulation of cytosolic cytochrome ¢
were analyzed by Western blot.

Results: We show that ACS6 protects PC12 cells against cytotoxicity and apoptosis induced by homocysteine and
blocks homocysteine-triggered cytochrome ¢ release and caspase-3 activation. ACS6 treatment results in not only
prevention of homocysteine-caused mitochondrial membrane potential (Ay) loss and reactive oxygen species
(ROS) overproduction but also reversal of Bcl-2 down-expression.

Conclusions: These results indicate that ACS6 protects PC12 cells against homocysteine-induced cytotoxicity and
apoptosis by preservation of mitochondrial function though inhibiting both loss of Ay and accumulation of ROS as
well as modulating the expression of Bcl-2. Our study provides evidence both for a neuroprotective effect of ACS6
and for further evaluation of ACS6 as novel neuroprotectants for Alzheimer's disease associated with homocysteine.
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Introduction

Homocysteine, a thiol-containing amino acid, is a key
metabolic intermediate in sulfuramino acid metabolism
[1,2]. Homocysteine not only can be remethylated to
methionine by enzymes that require folic acid but also
can be catabolized to form cysteine by cystathionine-f3-
synthetase (CBS). Both in vitro and in vivo studies have
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shown that homocysteine is toxic to neuronal cells [3-9].
One explanation for the mechanism of homocysteine
neurotoxicity is that auto-oxidation of homocysteine
leads to the formation of superoxide and hydrogen per-
oxide [10]. The causative link between hyperhomocystei-
nemia and neurodegeneration has been known [11].
Elevated brain homocysteine has been reported in
Alzheimer’s disease (AD) [12]. It is now established that
elevated plasma homocysteine is a strong, independent
risk factor of AD [13-17]. Therefore, the potential role of
homocysteine is regarded as a novel therapeutic target
for AD [17].
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Hydrogen sulfide (H,S), a well-known toxic gas with the
smell of rotten eggs, is formed naturally in mammalian tis-
sues and exhibits a series of biological and physiological
effects [18-21]. It has been recognized as an important
endogenous neuromodulator [18,22]. In the central ner-
vous system, endogenous H,S is synthesized from
L-cysteine and this process is predominantly catalyzed by
CBS [19,23]. The roles of H,S in neuroprotection have
been extensively reported [21,24]. H,S protects primary
rat cortical neurons from oxytosis induced by glutamate
[25] as well as SHSY-5Y cells against the neurotoxicity of
peroxynitite (ONOO ) [26] and hypochlorous acid (HOCI)
[27]. We also have reported that H,S produces neuropro-
tective effects when it is used to treat beta-amyloid- and
1-methyl-4-phenyl pyridium ion (MPP")-induced neuro-
toxicity [28-30]. Most recent study by our group have
demonstrated that H,S protects neurons from damage
caused by homocysteine to neurons [31], suggesting a pro-
mising role of H,S supplement as a novel therapeutic
strategy for AD associated with homocysteine.

The pharmacological profile of a new, safe and effec-
tive H,S-releasing sildenafil (ACS6) was described
recently [32]. Muzaffar et al. reported that ACS6 is a
potent inhibitor of superoxide formation and that H,S
release from ACSG6 is crucial for its biological actions
[32]. Thus, it is logical to test the role of ACS6 in
homocysteine-induced neurotoxicity.

The purpose of this study therefore is to investigate the
effects of ACS6 on homocysteine-induced neurotoxicity to
PC12 cells, a clonal rat pheochromocytoma cell line,
which is widely used for studying the cellular biology of
neurons (33-35). We demonstrated for the first time that
ACS6, a putative H,S-donating derivative of sildenafil, sig-
nificantly protected PC12 cells against homocysteine-
induced cytotoxicity and apoptosis by inhibition of reac-
tive oxygen species (ROS) accumulation, preservation of
mitochondrial membrane potential (Ay) and up-regula-
tion of bcl-2 expression. Our findings suggest that ACS6,
acting as an H,S donor, is able to act as a neuroprotectant.

Materials and methods

Materials

Hoechst 33258, Rhodamine 123 (Rh123), 2’,7’-dichlor-
fluorescein- diacetate (DCFH-DA) and homocysteine
were purchased from Sigma Chemical CO (st.Louis, MO,
USA). ACS6, 1-Piperazineacetic acid 4-[[3-(4,7-dihydro-
1-methyl-7-oxo0-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-
5-yl)-4- ethoxyphenyl]sulphonyl]-,4-(3-thioxo-3H-1,2-
dithiol-5-yl)phenyl ester, was supplied by CTG Pharma,
Milan, Italy (The chemical structure of ACS6 is shown in
Figure 1). Cell counter kit-8 (CCK-8) was bought from
Dojindo Lab. (Rockville, MD, USA). Antibodies for
detecting bcl-2 and cleaved caspase-3 were obtained
from Cell Signaling Technology, Inc (Beverly, MA, USA).
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Figure 1 The chemical structure of ACS6.

Antibody against cytochrome c (Cyt-c) was purchased
from Abcam Technology (Cambridge, CB, UK). RPMI-
1640 medium, horse serum and fetal bovine serum were
supplied by Gibico BRL (Ground Island, NY, USA).

Cell culture

PC12 cells, a rat cell line derived from a Pheochromocy-
toma cells, were supplied from Sun Yat-sen University
Experimental Animal Center (Guangzhou, China), and
were maintained on tissue culture plastic in RPMI-1640
medium supplemented with 10% heat-inactivated horse
serum and 5% fetal bovine serum (FBS) at 37°C under
an atmosphere of 5% CO, and 95% air. The culture
media was changed three times per week.

Determination of cell viability

The viability of PC12 cells was determined by Cell
Counting Kit-8 (CCK-8) assay. PC12 cells were cultured
in 96-well plates at 37°C under an atmosphere of 5% CO,
and 95% air. When the cells were about 70% fusion, indi-
cated conditioned-mediums were administered. At the
end of treatment, 10 pl CCK-8 solutions were added into
each well and then the plates were incubated for 3 h in
the incubator. Absorbance at 450 nm was measured with
a microplate reader (Molecular Devices, Sunnyvale, CA,
USA). Means of four wells optical density (OD) in the
indicated groups were used to calculate the percentage of
cell viability according to the formula below: cell viability
(%) = OD treatment group/OD control group x 100%.
The experiment was repeated three times.

Nuclear staining for assessment of apoptosis

Chromosomal condensation and morphological changes
in the nucleus of PC12 cells were observed using the
chromatin dye Hoechst 33258. The PC12 cells were fixed
with 4% paraformaldehyde in 0.1 M phosphate buffered
saline (PBS) for 10 min. After three rinses with PBS, the
cells were stained with 5 mg/L Hoechst 33258 for 10
min. Slides were rinsed briefly with PBS, air dried, then
mounted in an anti-fluorescein fading medium (Perma
Fluor, Immunon, PA, USA). Slides were visualized under
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a fluorescent microscope (BX50-FLA, Olympus, Tokyo,
Japan). Viable cells displayed normal nuclear size and
uniform fluorescence, whereas apoptotic cells showed
condensed nuclei or nuclear condensations. The percen-
tage of apoptotic cells was evaluated as follows: The per-
centage of apoptotic cells = The numbers of apoptotic
cells/(The numbers of apoptotic cells + The numbers of
viable cells) x 100%.

Measurement of the mitochondrial membrane

potential (Ay)

Ay was monitored using the fluorescent dye Rh123, a
cell permeable cationic dye, which preferentially enters
into mitochondria based on the highly negative Ay.
Depolarization of Ay results in the loss of Rh123 from
the mitochondria and a decrease in intracellular fluores-
cence [36]. Rh123 (100 pg/L) was added to cell cultures
for 45 min at 37°C. Rh123 fluorescence was measured
by flow cytometry (FCM, Beckman-coulter Co., USA).
Ten thousand cells per sample were analyzed and the
mean fluorescent intensity (MFI) in the positive cells
represents the level of Ay.

Measurement of intracellular ROS generation
Intracellular ROS were determined by oxidative conver-
sion of cell permeable 2’,7’-dichlorfluorescein-diacetate
(DCFH-DA) to fluorescent 2’,7’-dichlorfluorescein (DCF)
[37,38]. The cells were collected by pipetting and were
washed one time with PBS. After DCFH-DA (2.5 yuM)
was added to cell cultures for 20 min at 37°C, the cells
were washed twice with PBS. The mean fluorescent
intensity (MFI) of the positive cells in ten thousand cells
per sample was measured by FCM, and the MFI repre-
sents the amount of ROS.

Western blot analysis for cleaved caspase-3 and bcl-2

SDS-polyacrylamide gel electrophoresis (PAGE) was car-
ried out on 5% stacking and 12% resolving gel with low
range molecular weight standards (Solarbio, China).
Equal amounts of protein were loaded in each lane with
loading buffer (Beyotime, China) containing 0.1 M Tris
(pH6.8), 20% glycerol, 10% mercaptoethanol, 4% SDS
and 0.2% Bromophenol Blue. Samples were heated at
100°C for 5 min before gel loading. Following electro-
phoresis, the proteins were transferred to a PVDF trans-
fer membrane (Solarbio, China). After this, the
membranes were blocked with TBST (50 mM Tris-HCI,
pH 7.4, 0.15 M NaCl, 0.1% Tween-20) containing 5%
BSA (Sigma, USA) for 2 h. Following this, the mem-
branes were incubated with primary antibodies diluted
1:1000 at 4°C over night. After washing with TBST, the
membranes were incubated with anti-rabbit IgG labeled
with horseradish peroxidase (Zsbio, China) diluted at
1:1000 at room temperature for 2 h. The membranes

Page 3 of 12

were washed again and developed with an enhanced
chemiluminescence system (ECL, Zsbio, China) followed
by apposition of the membranes with autoradiographic
films (Kodak, China). The integrated optical density for
the protein band was calculated by Image-] software.

Analysis of Cytosolic Cytochrome ¢ Accumulation
Cytochrome c release from mitochondria into the cyto-
sol was measured by Western blot analysis. The cells
were collected by centrifugation at 200g for 10 min at 4°
C. The pellets were then washed twice with chilled PBS
and added with 400 pl of lysis buffer containing 250
mM sucrose, 20 mM HEPES-KOH, pH 7.4, 10 mM KCl,
1.5 mM Na-EGTA, 1.5 mM Na-EDTA, 1 mM MgCI2, 1
mM dithiothreitol, and a cocktail of protease inhibitors
(Roche Diagnostics, Shanghai, China). After incubation
on ice for 5 min, the cells were gently scraped off and
centrifuged at 1000g for 10 min at 4°C. The superna-
tants were further centrifuged at 16,000g for 25 min at
4°C. The resulting supernatant was used as the soluble
cytosolic fraction and subjected to Western blot analysis
as mentioned above.

Statistical analysis

Data are expressed as mean + SEM. The significance of
inter-group differences was evaluated by one-way ana-
lyses of variance (ANOVA: Least-significant difference’s
test for post hoc comparisons). Differences were consid-
ered significant at P < 0.05.

Results

ACS6 suppresses homocysteine-induced cytotoxicity

To investigate the effect of ACS6 on homocysteine-
induced cytotoxicity, cell viability was analyzed by CCK-
8 assay. As shown in Figure 2A, treatment with homo-
cysteine (5 mmol/L) for 24 h significantly attenuated
cell viability and the cytotoxic effect of homocysteine on
PC12 cells was blocked by pretreatment with ACS6 at
the concentrations of 4, 8, and 16 pmol/L for 30 min in
a concentration-dependent manner. ACS6 (from 4
pmol/L to 16 pmol/L) alone did not measurably affect
the viability of PC12 cells (Figure 2B). These results
indicate that ACS6 protects PC12 cells against homocys-
teine-caused cytotoxicity.

ACS6 inhibits homocysteine-induced apoptosis

The nuclear staining assay was used to assess the mor-
phological changes of apoptosis in PC12 cells. As illu-
strated in Figure 3, the untreated cells and the cells
treated with 16 pmol/L ACS exhibited uniformly dis-
persed chromatin and intact cell membrane. On the
other hand, the homocysteine-treated cells (5 mmol/L,
for 24 h) appeared typical characteristics of apoptosis,
including apoptotic nuclear condensation. When PC12
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Figure 2 ACS6 protects PC12 cells against homocysteine-induced cytotoxicity. (A) PC12 cells were pretreated with ACS6 (4, 8, or 16 umol/
L) for 30 min and then exposed to homocysteine (Hcy, 5 mmol/L) for 24 h. (B) PC12 cells were treated with 4, 8, and 16 pmol/L ACS6 for 24 h.
Cell viability was determined by CCK-8 assay. Values are the mean + SEM (n = 3). ***P < 0,001, versus control group; *P < 0.05, *P < 0.01, versus
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cells were pretreated with 16 pmol/L ACS6, however,
the number of cells with nuclear condensation induced
by 24 h exposure to 5 mmol/L homocysteine was signif-
icantly reduced, suggesting that ACS6 protects PC12
cells against apoptosis induced by homocysteine.

ACS6 decreases homocysteine-induced release of Cyt-c
We examined the effect of ACS6 on the release of Cyt-c
in homocysteine-stimulated PC12 cells by Western blot
analysis. As illustrated in Figure 4, treatment with
homocysteine (5 mmol/L) for 24 h significantly pro-
moted the release of Cyt-c in PC12 cells. However, the
homocysteine-induced release of Cyt-c was significantly
attenuated by pretreatment with ACS6 (16 pumol/L, 30
min). These results indicate that ACS6 prevents homo-
cysteine-induced Cyt-c release.

ACS6 reduces homocysteine-induced activation of
caspase-3

To investigate whether ACS6 modulates homocysteine-
induced activation of caspase-3, the levels of caspase-3
activation were measured by Western blot analysis using
anti-cleaved caspase-3 antibody. As illustrated in Figure
5, exposure to homocysteine (5 mmol/L, 24 h) signifi-
cantly enhanced the expression of cleaved caspase-3 in
PC12 cells. However, the homocysteine-induced
enhancement of cleaved caspase-3 expression was signif-
icantly inhibited by pretreatment with ACS6 (16 pmol/
L, 30 min). These results indicate that ACS6 blocks the
homocysteine-induced activation of caspase-3.

ACS6 attenuates homocysteine-induced accumulation of
intracellular ROS

As the cytotoxicity of homocysteine is mainly mediated
by oxidative stress [10,39], we investigated the effect
ACS6 on homocysteine-induced ROS formation by

using DCFH-DA staining. Compared with non-treated
control cells, the level of intracellular ROS was increased
in PC12 cells treated with 5 mmol/L homocysteine for
24 h, as shown by the increase in the MFI of DCF quan-
tified by FCM analysis (Figure 6A, B). However, when
PC12 cells were co-treated with ACS6 (16 ymol/L), the
MEFI of DCF (Figure 6A, B) in PC12 cells exposed to
homocysteine (5 mmol/L, 24 h) were significantly
decreased, suggesting that homocysteine-induced intra-
cellular ROS accumulation is attenuated by ACS6. The
cells treated with ACS6 (16 umol/L) alone showed weak
DCF fluorescence similar to that in the vehicle control
(Figure 6).

ACS6 prevents homocysteine-induced dissipation of Ay
Dissipation of Ay is a critical event in the process of
apoptosis [40]. To examine whether the anti-apoptotic
effect of ACS6 involves preservation of Ay, we used
Rh123 staining to assess the level of Ay in PC12 cells.
After 24 h exposure to 5 mmol/L homocysteine, the Ay
was obviously reduced, as shown by the decrease in the
MEFI of Rh123 quantified by FCM analysis (Figure 7A,
B), compared with non-treated control cells. Although
ACS6 exposure alone (16 umol/L) has no effect on Ay
of PC12 cells, the cells pretreated with ACS6 (16 pmol/
L) for 30 min enhanced the intensity of Rh123 fluores-
cence in PC12 cells treated with homocysteine (5 mmol/
L) for 24 h (Figure 7A, B). These results suggested that
homocysteine-induced dissipation of Ay is inhibited by
ACSe6.

ACS6 reverses homocysteine-induced down-regulation of
Bcl-2 expression

Bcl-2 is an anti-apoptotic protein. To explore whether
ACS6 modulates the effect of homocysteine on bcl-2
expression, the levels of bcl-2 were measured by
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Figure 3 Nuclear staining to evaluate the anti-apoptotic effect of ACS6. After pretreated with 16 pmol/L ACS6 for 30 min, PC12 cells were
exposed to 5 mmol/L homocysteine (Hcy) for 24 h and incubated with 5 mg/L Hoechst 33258 for 30 min. (A) Representative morphology
visualized under a fluorescence microscope (10 x objective, BX50-FLA, Olympus). Cells with brightly fluorescent and fragmented nuclei were
apoptotic. (B) Quantitative analysis of the percentage of apoptotic cells. Values are the mean + SEM (n = 5). ***P < 0.001, versus control group;
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Western blot analysis. As illustrated in Figure 8, expo-
sure to homocysteine (5 mmol/L, 24 h) significantly
reduced the expression of Blc-2 in PC12 cells. However,
the homocysteine-induced decrease of Bcl-2 expression
was significantly abolished by pretreatment with ACS6
(16 pumol/L, 30 min). These results indicate that ACS6
blocks the homocysteine-induced down-regulation of
Bcl-2 expression.

Discussion

Homocysteine is known to induce neurotoxicity and
apoptosis [6,8] and cause oxidative damage [41]. Our
previous results have demonstrated that homocysteine
inhibits the activity and expression of CBS and the
endogenous production of H,S in PC12 cells and this
inhibitory effect contribute to the neurotoxicity of
homocysteine [42]. We also found that H,S acts as a
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Figure 4 Effects of ACS6 on the release of Cyt-c in PC12 cells. After pretreated with 16 pmol/L ACS6 for 30 min, PC12 cells were exposed to
5 mmol/L homocysteine (Hcy) for 24 h. A, representative immunoblots for Cyt-c release from three independent experiments. Cytosolic fractions
of the extract were subjected to Western blot analysis using an anti-Cyt-c antibody. In all blots, staining for $-actin was used as a loading
control. B, quantification of cytosolic Cyt-c accumulation as a percent of the control. Values are the mean + SEM (n = 3). ***P <0.001, versus

control; *P < 0.05, versus 5 mmol/L homocysteine-treated alone group.

neuroprotectant counteracting an oxidative insult to
neurons induced by homocysteine [31]. It has been
shown that ACS6 inhibits the formation of superoxide
by releasing H,S [32]. Therefore, we investigated
whether ACS6 has the ability to attenuate the neuro-
toxicity of homocysteine.

PC12 cells, originally derived from a transplantable rat
pheochromocytoma, are accepted as a model system for
primary neuronal cells because of their ability to respond
to nerve growth factor [43]. In the present study, we deter-
mined the neuroprotective effects of ACS6 on homocys-
teine neurotoxicity and the underlying mechanisms by
studying PC12 cells. Similar to the findings by Linnebank
et al. [9], we found that exposure of PC12 cells to homo-
cysteine resulted in decrease of viability as well as increase

of apoptotic cells. Furthermore, Cyt-c release and caspase-
3 activation occurred in response to homocysteine in
PC12 cells. These results indicated that homocysteine
induces significant neurotoxicity and apoptosis in PC12
cell. Of important, the present work demonstrated that
ACS6 not only attenuated the cytotoxicity and the apopto-
tic cells induced by homocysteine but also inhibited
homocysteine-triggered Cyt-c release and caspase-3 activa-
tion in PC12 cells. This study is therefore the first to con-
clude that treatment with ACS6 blunts the apoptosis
induced by homocysteine in PC12 cells.

It is well known that mitochondrial dysfunction is an
important feature in apoptosis [44] as well as a promi-
nent factor associated with cell death and some models
of apoptosis [40]. Mitochondrial damage is consistent
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with intracellular ROS production and changes in Ay
during apoptosis [45]. Ay has been shown to be involved
in a variety of pathophysiological conditions, in particular
for apoptosis [46,47]. ROS is responsible for the homo-
cysteine-induced neurotoxicity [10,39]. Overproduction
of ROS may result in mitochondrial dysfunction, causing
Ay loss and promoting Cyt-c release and caspase-3 acti-
vation, which ultimately cause cell apoptosis [48]. To
investigate the mechanisms of the cytoprotective effect of
ACS6 on homocysteine-induced apoptosis in PC12 cells,
we examined its effects on the homocysteine-mediated
changes in ROS and Ay. The overproduction of ROS and
dissipation of Ay were significantly induced in homocys-
teine-exposed PC12 cells, while pretreatment with ACS6
prevented both phenomena. Our results suggested that
the anti-apoptotic effect of ACS6 is associated with the
preservation of mitochondrial function by blocking the
dissipation of Ay and the increase in ROS level.

It has been shown that Bcl-2 prevents apoptosis by reg-
ulating an antioxidant pathway [49]. Kane, et al. reported
that bcl-2 inhibits neural death by reducing the genera-
tion of ROS [50]. Additionally, over-expression of bcl-2
increases stability of Ay [51], and blocks cytochrome C
release from mitochondria prior to mitochondrial mem-
brane depolarization by preventing mitochondrial pore
opening [52]. It is therefore established that the cytopro-
tective effects associated with decrease in ROS generation
and stability of Ay may be the results of over-expressed
bcl-2. In the present study, we revealed that ACS6
blocked the down-regulation of bcl-2 induced by homo-
cysteine. This finding implied that ACS6-induced up-reg-
ulation of bcl-2 expression may be involved in the
protective actions of ACS6 against homocysteine-induced
apoptosis and neurotoxicity.

In summary, our data for the first time demonstrated
that ACS6 significantly limits the decrease in viability as
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Figure 6 Effects of ACS6 on homocysteine-exerted accumulation of intracellular ROS in PC12 cells. After pretreated with 16 pmol/L ACS6
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Figure 7 Effects of ACS6 on homocysteine-induced loss of mitochondrial membrane potential (Ay) in PC12 cells. After pretreated with
16 umol/L ACS6 for 30 min, PC12 cells were exposed to 5 mmol/L homocysteine (Hcy) for 24 h and stained with Rh123 for 20 min. The
changes of Ay in different treatment groups were quantified by fluorescent sorting FCM analysis. (A) Representative histogram of Rh123-derived
fluorescence in PC12 cells exposed to different treatments measured by FCM. (B) Quantitative analysis of the mean fluorescence intensity (MFI)
of Rh123 measured by FCM. Values are the mean + SEM (n = 3). **P <0.01, versus control; #p <001, versus 5 mmol/L homocysteine-treated
alone group.
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Figure 8 Effects of ACS6 on the expression of Bcl-2 in PC12 cells. After pretreated with 16 umol/L ACS6 for 30 min, PC12 cells were
exposed to 5 mmol/L homocysteine (Hcy) for 24 h. The levels of Bcl-2 expression in PC12 cells were determined by Western blot using an anti-
Bcl-2 antibody. Western blot images show representative results from three independent experiments. In all blots, staining for B-actin was used
as a loading control. The level of Bcl-2 expression obtained in each experimental condition was calculated as a fold of the control. Values are the
mean + SEM (n = 3). **P <0.01, versus control; *P < 0.05, versus 5 mmol/L homocysteine-treated alone group.

well as the increase in apoptotic cells induced by homo-
cysteine and prevents homocysteine-triggered Cyt-c
release and caspase-3 activation. ACS6 not only blocks
the loss of Ay and overproduction of ROS caused by
homocysteine but also upregulates the down-expression
of Bcl-2 occurred in response to homocysteine. The
findings support that ACS6 protects PC12 cells against
homocysteine induced cytotoxicity and apoptosis and
the underlying mechanism may involve preservation of
mitochondrial function by inhibiting both loss of Ay
and accumulation of ROS as well as up-regulating the
expression of bcl-2.

ACS6 is a putative H,S-donating derivative of sildena-
fil. It has been reported that H,S release from ACS6 is
crucial for its biological action that inhibits the formation
of superoxide [32]. In recent years, it has become clear
that protects neurons from oxidative stress by increasing

the levels of GSH [25,53] and attenuate myocardial ische-
mia-reperfusion injury by preserving mitochondrial func-
tion [54]. It is worthy to note that a previous study
reported that H,S was detrimental in cerebral ischemia
in rats [55]. This finding suggested that H,S is protective
at concentrations that are equivalent to normal physiolo-
gical concentrations, but is deleterious at supraphysiolo-
gical concentrations in the brain. This is also supported
by the data that excessive inhibition of H,S by AOAA led
to detrimental effects in the brain [55]. Therefore, the
ability of H,S to regulate cell viability may be concentra-
tion and time dependent. At low concentrations, as may
occur in physiological conditions, cells remain unscathed
by H,S, but, at high concentrations, as may occur in
pathological states, a cytotoxic/proapoptotic effect
becomes evident. To date, H,S-releasing “drugs” used in
biological experiments has been largely restricted to
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simple sulfide salts, most commonly sodium hydrosulfide
(NaHS), which releases H,S instantaneously in aqueous
solution. However, the release of endogenous H,S from
cells is likely to occur in lesser amounts and at a much
slower rate than that from sulfide salts, and therefore
NaHS may not mimic the biological effects of naturally
produced H,S [56]. Muzaffar et al. reported that once
taken up by cells, ACS6 would release H,S intracellularly
and in a long-lasting controlled way [32]. Large amounts
of H,S released over a short time frame by NaHS may
trigger signaling pathways resulting in cell death, whereas
this does not occur with the slower but sustained release
of lower amounts of H,S from ACS6.

Conclusions

In conclusion, the present findings clearly identify that
ACS6, a novel H,S-releasing derivative, provides signifi-
cant protection against homocysteine-induced neurotoxi-
city to PC12 cells by inhibiting both loss of Ay and
accumulation of ROS and up-regulating the expression of
bcl-2. Based on the notion that elevated plasma homocys-
teine is a strong, independent risk factor of AD [13-17],
our present study indicates that ASC6, or perhaps alterna-
tive related H,S-releasing compounds, could be worth to
be further investigated in the study for their therapeutic
uses as novel neuroprotectants for AD associated with
homocysteine.
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