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Abstract

Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could
be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve
these neurological deficits are limited. We conducted a literature review of treatment protocols designed to
evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The
search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with
cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest
including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are:
1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics.
Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive
neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple
pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest.

Keywords: Cardiac arrest, Global brain ischemia, Neuronal death, Neuroprotection, Resuscitation, Argon, Xenon,
Nitric oxide
Introduction
The leading cause of death after successful cardiopulmo-
nary resuscitation (CPR) following cardiac arrest (CA) is
neurologic injury [1]. In spite of the long-term efforts by
the American Heart Association and related organiza-
tions to update and disseminate resuscitation guidelines,
in-hospital mortality among patients successfully resus-
citated remains near 70% [2,3]. For those patients who
do survive to hospital discharge, neurologic injury ac-
counts for a significant morbidity with nearly 2/3 of pa-
tients having moderate to severe cognitive deficits three
months after CA [4].
The aim of this article is to review strategies that could

potentially be utilized during or after resuscitation to im-
prove survival and neurologic outcome in patients who
suffer CA. Therapeutic hypothermia (TH) is currently
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recommended by the American Heart Association for
comatose patients with restoration of spontaneous circu-
lation (ROSC) after out of hospital cardiac arrest sec-
ondary to ventricular fibrillation/shockable ventricular
tachycardia (Class 1) and is also considered as treatment
for similar patients who suffer in hospital CA and out of
hospital CA caused by non-shockable rhythms [5]. The
beneficial effects of TH have been published in extensive
literature and reviews [6-8] and are not included here. We
seek to evaluate other strategies that, when used individu-
ally or in conjunction with TH, may further improve neuro-
logic outcomes in patients after CA. The interventions
employed during or after CPR that have demonstrated ben-
efits in an animal model of CA may have translation poten-
tial to CA patients and thus perhaps provide significant
survival and neurologic outcome benefits.
Literature search method
A literature search was conducted of articles indexed in
Medline and published between 1980 and October 2013
using combinations of keywords including “brain injury”,
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Table 1 Search terms used to perform literature search

Database Search terms

PubMed brain injury

cardiac arrest

neuroprotection

cerebral protection

cardiopulmonary resuscitation

global ischemia

global cerebral ischemia

global brain ischemia

These terms were searched in combinations as subject
headings and keywords simultaneously.

Articles were limited to those printed or translated into English
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“cardiac arrest”, “neuroprotection”, “cerebral protection”,
“cardiopulmonary resuscitation”, “global ischemia”, “global
cerebral ischemia”, and “global brain ischemia” (Table 1).
Bibliographies of relevant articles were cross-referenced
for pertinent articles. Articles were selected for review if
postulated mechanisms of neuroprotection and some
measure of neurologic outcomes were included. Only neu-
roprotective strategies tested in animal models relevant to
global brain ischemia associated with CA were reviewed.
Case reports, pediatric studies and articles not written in
English were excluded. Studies of therapies administered
before CA were not included as our goal was to investi-
gate potential therapies to improve neurologic outcome
that can be employed in the clinical setting (during or
after CPR). Similarly, the many studies related to neuro-
protection from anesthetic agents were not included, as
administration of anesthetic agents during or immediately
after CPR may be impractical or associated with undesir-
able hemodynamic effects. Due to the pathophysiological
differences between focal and global cerebral ischemia,
the extensive literature regarding neuroprotective strat-
egies in focal cerebral ischemia is acknowledged but not
included in this review. In light of the amount of literature
available, we have divided this review into 2 parts. Part I
of this review (41 articles; Table 2) focuses on approaches
that target an individual stage of the cerebral pathological
cascade after resuscitation from CA.

Review
In CA and resuscitation, the entire brain is subjected to
a transient period of complete ischemia followed by reper-
fusion. The comprehensive cascades of pathophysiology
constituting global brain hypoxic ischemia/reperfusion in-
jury are summarized in Figure 1A. Based on the possible
mechanisms of protection, the literature was separated
into 3 broad mechanistic categories affecting global brain
injury shown in Figure 1B: MODULATING NEURONAL
CELL DEATH PATHWAY(S), INFLUENCING OXY-
GEN FREE RADICALS, OR IMPROVING CEREBRAL
FLUID DYNAMICS.

Modulation of neuronal cell death pathway(s)
A number of processes can ultimately lead to neuronal
injury and cell death following global brain ischemia in-
cluding excitatory amino acid toxicity, metabolic acidosis
and dysregulation of intracellular calcium homeostasis,
protease activation, inflammation and activation of pro-
grammed cell death pathways [9,10]. Strategies that
interrupt the propagation of these cascades would theor-
etically favor neuronal survival.

Anti-excitatory amino acid toxicity
N-Methyl-D-aspartate (NMDA) receptor antagonist Ex-
cessive activation of NMDA receptors under conditions
of energy substrate depletion results in glutamate exci-
totoxicity [11]. This pathology has been demonstrated
in animal models of global brain ischemia [12,13] and
in human patients recovering from CA [14]. Conse-
quently, much effort has gone into targeting glutamate
receptor subtypes in an attempt to limit ischemic brain
damage.
However, in the setting of global brain ischemia, pre

or post CA infusion with the NMDA receptor antagonist
MK-801 exacerbated post-resuscitation neurological def-
icits in the dog model [15]. Similarly post-CA intraven-
ous treatment with the NMDA receptor antagonist GPI
3000 was associated with poor survival and neurologic
function along with increased neuronal death in the neo-
cortex and hippocampus in dogs subjected to CA and
CPR [16]. An interaction between ischemia and com-
petitive NMDA receptor antagonism may be the cause
of deleterious outcomes [15]. Indeed, pharmacological
attempts to use NMDA receptor blockers for stroke
have had very limited clinical success because these
compounds produce additional adverse side effects such
as profound psychotomimetic behavioral changes as well
as intrinsic neurotoxicity at proposed neuroprotective
concentrations [17-19].

Lamotrigine An alternative approach to ameliorate glu-
tamate excitotoxicity can be to inhibit the presynaptic re-
lease of glutamate by using the phenyltriazine seizure
drug lamotrigine. Lamotrigine has been previously shown
to improve survival and neurologic function as well as
hippocampal neurohistopathology up to 21 days in a ger-
bil model of bilateral cerebral artery occlusion [20]. Simi-
lar neuroprotection was consistently found in a rat model
of CA [21]. Lamotrigine administered 15 minutes after
8.5 minutes of CA significantly improved the number of
viable cells compared to non-treated CA rats at 3 weeks
after CA. The mechanism of action of lamotrigine is



Table 2 Summary of neuroprotective strategies for global cerebral ischemia associated with cardiac arrest

Therapy Proposed
mechanism

Study subject Blind Placebo
control

Rando-
mized

Delivery route Eff (positive,
ne ive, neutral)

Outcomes evaluated

Category of Mechanisms I: Modulating neuronal cell death

MK-80115 NMDA antagonist Dogs Yes Yes Yes Intravenous Ne ive Survival16, neurological function15,16;
neurohistopathology15,16

GPI 300016

Lamotrigine21 Inhibition of
glutamate release

Rats Not mentioned Yes Yes Intravenous Po e Neurohistopathology

Xenon26, 30–32 NMDA antagonist Pigs26, 30–32 Yes26, 30–32 Yes26, 30–32 Yes26, 30–32 Inhale26, 30–32 Ear ntervention
(10 inutes post-
RO Neutral26

Neurologic function26, 30–32;
neurohistopathology26, 30,31

Human
(2 ongoing clinical
trials: NCT00879892,
NCT01262729)

Lat tervention
(1 ost-ROSC)
Po e30–32

Argon33,34 Anti-apoptosis Rats Yes Yes Yes Inhale Po e Neurologic function;
neurohistopathology;

Ischemic post-
conditioning 42,43

Anti-apoptosis Pigs Yes Yes Yes Intravenous Po e Survival43; neurological function42,43;
neurohistopathology43;
Left ventricular ejection function42,43

Caspase 3 inhibitor
zDEVD-FMK45

Anti-apoptosis Rats Yes Yes Yes Intracerebro-
ventricular

Ne l Neurologic function;
neurohistopathology

Sodium
bicarbonate48,50–52

Buffering of
metabolic acidosis

Dogs48 Yes48,52 Yes48 Yes48,52 Intravenous Po e for long
car c arrest
(15 inutes) and
ne al for short
car c arrest
(5 utes)48,52

Return of spontaneous
circulation48, 50–52; survival48,50–52;
neurological function48,50–52Humans

(retrospective50,51;
perspective52; ongoing
clinical trial: NCT01377337)

No50,51 No50–52 No50,51

Po e at low
do 1 mEq/kg)
and egative at
hig ose
(>1 Eq/kg)50

Mean arterial pressure and coronary
perfusion pressure48

Po e at high
usa (dose not
spe ied)51

Neurohistopathology48

Carbicarb49 Buffering of
metabolic acidosis

Rats Yes Yes Yes Intravenous Po e at low
do 3 ml/kg);
Ne ive at high
do 6 ml/kg)

Mean arterial pressure; survival;
neurological function;
neurohistopathology

Fluoxetine55 Anti-inflammatory Mice Yes Yes Yes Intravenous Ne l at low
do 10 mg/kg);
Po e at high
do 5 mg/kg)

Neurologic function;
neurohistopathology
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Table 2 Summary of neuroprotective strategies for global cerebral ischemia associated with cardiac arrest (Continued)

Matrix
metalloproteinase-9
inhibitor56

Anti-inflammatory Rats Not mentioned Yes Yes Intraperiton-eal Positive Brain water content;
neurohistopathology

Category of Mechanisms II: Influencing oxygen free-radicals

Hyperoixa (100%)
ventilation57–62

Increased
oxidative stress

Dogs57–60 Not men-tioned57, 59–62 No Yes Inhale Negative57–61 Neurological function57–61;
neurohistopathology58–61;
plasma biomarkers of neuronal
damage62

Pigs61 Yes58 Neutral when co-
treated with
hypothermia and
Negative when not
co-treated with
hypothermia 62

Human62

Methylene blue65–67 Attenuation of
oxidative and
inflammatory
injury

Pigs Not mentioned Yes Yes Intravenous positive Survival65; inflammatory markers65;
neurohistopathology 66; genomics67

Inhaled nitric oxide68,69 Inhibition of
reactive oxygen
species

Mice Not mentioned Yes yes Genotype68 positive Survival68,69; neurological
function68,69;
neurohistopathology68,69;
LVEF68,69; brain edema69;
diffusion weighted imaing69

Inhale69

Nitrite70,71 Reversible
inhibition of
mitochondrial
complex I with
reduced free
radical
production70

Rats70 Yes Yes Yes Intravenous Positive Survival; neurological function;
neurohistopathology

Improved
mitochondrial
function and S-
nitrosylation for
pro-survival71

Mice71

N-acetylcysteine75 Free-radical
scavenger

dogs Yes Yes Yes Intravenous Neutral Neurologic function

Category of Mechanisms III: Improving cerebral hemodynamics

Intrathoracic pressure
during CPR76–79

Improved organ
perfusion

Pigs76,77 Not men-tioned76,77 Yes Yes Intrathoracic
pressure
regulator76

Positive76–79 Survival76–79; neurological
function76–79; brain and heart
blood flow76

Humans78,79 No78 Active
compression-
decompression
device + im-
pedance
threshold de-
vice77–79

Neutral for
neurologic
recovery78Yes79
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Table 2 Summary of neuroprotective strategies for global cerebral ischemia associated with cardiac arrest (Continued)

Sodium nitroprusside +
active compression/
decompression +
impedance threshold
device80–82

Improved organ
perfusion

Pigs Yes Yes Yes Intravenous Positive Survival and neurological function80;
return of spontaneous circulation
and carotid blood flow81,82; cerebral
perfusion pressure and coronary
perfusion pressure81

Hypertonic saline
hydroxyethyl starch83

Improve
perfusion,
decrease
intracranial
pressure, decrease
brain edema

Rats Yes Yes Yes Intravenous Positive for
cerebral blood
flow during early
reperfuion; neutral
at late time point
(7-day post-
resuscitation)

Survival; cerebral blood flow;
neurological function;
neurohistopathology

Superscript numbers indicate the citation number of studies reviewed.
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Figure 1 Pathophysiology and possible mechanisms of protection following cardiac arrest. A: Comprehensive cascades of pathophysiology
constituting global brain hypoxic ischemia and reperfusion injury following cardiac arrest (CA) and return of spontaneous circulation (ROSC). B: The
possible mechanisms of protection investigated in literature included in this review were separated into three broad mechanistic categories. The
effects of these interventions could decrease global brain injury after resuscitation from cardiac arrest and thus potentially improve survival and
neurologic outcome.

Mangus et al. Medical Gas Research 2014, 4:9 Page 6 of 14
http://www.medicalgasresearch.com/content/4/1/9
purported to be inhibition of pre-synaptic glutamate release
by blockade of voltage dependent sodium channels [22].
Additionally, decreased sodium influx can prevent intracel-
lular calcium overload, further favoring outcome [23].
Xenon The inert gas xenon has both anesthetic proper-
ties and a pharmaceutical profile of low-affinity use-
dependent NMDA receptor antagonism at nonanesthetic
concentrations [24]. It may avoid or reduce adverse side
effects and potential neurotoxicity associated with proto-
typical NMDA receptor antagonists [19,25]. A number
of pre-clinical studies have shown potential utility for
xenon as a neuroprotectant when administered alone or
in combination with TH [26-29]. In a pig model of CA
and CPR, combined mild hypothermia (33 degrees C for
16 hours) with xenon (70% xenon and 30% O2 for
1 hour) showed significantly improved neurologic deficit
scores over 5 days post-ROSC relative to untreated con-
trols [30]. While neuronal viability was similar to mild
TH, combined mild TH + xenon treatment was associ-
ated with less astrogliosis and microgliosis, suggesting
synergistic protection from the combination.
Other xenon studies have been conducted without

combined TH. Pigs underwent 8 minutes of ventricular
fibrillation (VF) arrest followed by 5 minutes of CPR
[31]; one hour after ROSC the pigs were randomized to
70% xenon in 30% O2 for 1 hour or 70% xenon in 30%
O2 for 5 hours or 70% nitrogen in 30% O2 (control). Im-
provement in neurologic function was transient as bene-
fit was only seen in the first 3 post-ischemia days with
no significant difference observed on post-ischemia day
4. At necropsy on day 5, there were significantly reduced
numbers of necrotic neurons in pigs ventilated with
xenon [31].
A similar study evaluated pigs receiving 70% xenon/

30% O2 vs. 69% N2/1% isoflurane/30% O2 vs. 70% N2/
30% O2 for one hour starting 10 minutes after ROSC;
findings revealed no differences with respect to neuro-
logic deficit scores over 4 days or neurohistopathological
analysis at day 5 [26].
However, a separate xenon study without TH revealed

that the time to initiate xenon treatment appears to be
critical [32]. Late rather than early treatment with xenon
after CA resulted in neurologic benefit. Xenon 70%/O2

30% administered for one or five hours starting one hour
after ROSC was associated with improved neurologic
function compared to the control group receiving
70% N2/30% O2 [32].
As of this writing, a search of the ClinicalTrials.gov site

for xenon and cardiac arrest reveals that there are two
human clinical trials recruiting subjects (NCT00879892;
NCT01262729). These two clinical trials may provide a
better picture about the translation potential of xenon use
following CA.

Anti-apoptosis
Argon Argon is a non-anesthetic gas that is relatively
cost-effective and available compared to xenon. Intri-
guing data have shown neuroprotective properties of
argon in animal models of global brain ischemia second-
ary to CA. Rats underwent 7 minutes of CA followed by
3 minutes of CPR and one hour after CPR were then
randomized to ventilation with 70% argon/30% O2 vs.
70% N2/30% O2 for one hour [33]. Argon treated rats
had significantly improved neurologic deficit scores for



Mangus et al. Medical Gas Research 2014, 4:9 Page 7 of 14
http://www.medicalgasresearch.com/content/4/1/9
7 days and demonstrated statistically better neurohisto-
pathological outcome in the neocortex and the CA3/4
region of the hippocampus. In a separate pig model of CA
(8 minutes) and CPR (5 minutes), four hour ventilation
with 70% argon/30% O2 after ROSC resulted in signifi-
cantly improved neurologic recovery and less histopath-
ology in brain tissue [34].
In general, the mechanisms of neuroprotection by

argon are poorly understood. The mechanism of neuro-
protection afforded by argon may involve activation of
anti-apoptotic signaling through increasing BcL-xL or
Bcl-2 levels, thus promoting cell survival [35]. Argon
may also affect gamma aminobutyric acid type A recep-
tors, although further data is required to clarify whether
this is the mechanism for cytoprotection [27].

Ischemic post-conditioning (IPC) Although resuscita-
tion requires reperfusion of ischemic tissue with oxy-
genated blood to restore aerobic metabolism and organ
function, reperfusion concomitantly activates multiple
pathogenic mechanisms and results in what is collectively
known as reperfusion injury [23]. At the center of reperfu-
sion injury are mitochondria, playing a critical role as ef-
fectors and targets of injury. Mitochondrial calcium
overload can worsen cell damage by compromising
mitochondrial capability to sustain oxidative phos-
phorylation [36] and by promoting the release of pro-
apoptotic factors [37]. Although interrupting chest
compressions for an extended period during CPR may
lead to poor outcome [38], IPC can limit reperfusion
injury, thus exerting anti-apoptotic effects through
mitochondrial protection [23,39-42]. In pigs subjected
to 15 minutes of VF arrest, IPC was given during the
first 3 minutes of CPR as 4 cycles of 20 seconds of
chest compressions followed by a 20 second pause and
compared to a control group of CPR without IPC.
Both groups received mild TH for 12 hours after CPR.
Left ventricular ejection fraction (LVEF) and neurological
functional recovery were significantly better in the CPR +
IPC group at 2 days compared to regular CPR. The same
investigators further compared the effects of standard
CPR, CPR + IPC, CPR + cardioprotective vasodilator ther-
apy (CVT), or CPR + IPC + CVT [43]. CVT (IV sodium
nitroprusside 2 mg and adenosine 24 mg) was adminis-
tered during the first minute of CPR. CPR + IPC showed
significantly better 48-hour survival, LVEF, neurological
assessment and histological scores compared to the other
groups.

Caspase-3 inhibitor Caspase-3 activation plays a central
role in apoptotic pathways following brain injury [44].
zDEVD-FMK directly interrupts the apoptotic pathway
by inhibiting caspase-3 in focal brain ischemia [45].
However, the same benefits were not observed in the
setting of global ischemia secondary to CA. In a rat
model of CA and CPR, a 7-day intracerebroventricular
(ICV) infusion of the caspase-3 inhibitor zDEVD-FMK
after ROSC did not improve neurologic deficit or neuro-
histopathology at 1, 3 and 7 days [46]. The discrepancy
may be attributed to either whole body ischemia/reperfu-
sion syndrome and/or a systemic inflammatory response
syndrome, which increases the pathological complexity of
brain injury in CA. Additionally, the lack of protective ef-
fects may result from high zDEVD-FMK clearance inside
the ICV system and/or an impaired uptake into the brain
parenchyma [46].

Buffering metabolic acidosis CA prompts a shift to an-
aerobic metabolism leading to rapid development of in-
tense and sustained intracellular acidosis systemically
and locally in the brain. This subsequently triggers a bat-
tery of pathological processes resulting in cytosolic calcium
overload. In the “low flow” or “no flow” state followed by
reperfusion, both CO2 elimination by ventilation and meta-
bolic correction by HCO3 buffering may be necessary to
optimize pH recovery [47]. In this context, buffering meta-
bolic acidosis using sodium bicarbonate (NaHCO3) and
carbicarb have been evaluated as neuroprotective strat-
egies, but the efficacy remains controversial.
After dogs underwent VF arrest for either 5 minutes

(short) or 15 minutes (long), NaHCO3 was administered
as 1 mmol/kg initially with additional doses as necessary
to correct base deficit to −5 mEq/l [48]. Dogs treated
with NaHCO3 demonstrated equivalent rates of ROSC
and 24 hour survival with short arrest but significantly
improved ROSC and survival in the long arrest group
when compared to controls. Acidosis was also signifi-
cantly less in the prolonged arrest group treated with
NaHCO3, while coronary and systemic perfusion pres-
sures were significantly better. Neurologic deficit scores
were improved in both groups treated with NaHCO3,
but histopathologic staining was not different.
Carbicarb is an alkalinizing agent given to combat

acidosis inherent to CA. While NaHCO3 produces in-
creased CO2 and a paradoxical cerebral acidosis, carbi-
carb is a mixture of HCO3 and sodium carbonate that
does not produce paradoxical cerebral acidosis. In a rat
model of CA (8 minutes) and CPR, low dose (3 ml/kg)
carbicarb post-ROSC treatment had positive outcomes
for 7-day survival, neurologic deficits and hippocampal
cell death compared to controls [49]. The protection
was secondary to attenuation of brain pH decreases as
well as an increase in post-resuscitation mean arterial
pressure (MAP). A high dose (6 ml/kg) group com-
pletely neutralized pH but had negative outcomes when
compared to the control group with increased neuronal
cell death, increased neurologic deficit and decreased
MAP [49].
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In CA patients, retrospective studies showed some
benefits of NaHCO3 [50,51], but a prospective random-
ized double blind clinical trial did not [52]. In one of the
retrospective human studies, low versus high dose
NaHCO3 administration during resuscitation had no im-
pact on immediate ROSC but low dose NaHCO3 favored
long-term outcomes including survival and neurologic
outcome [51]. The authors found that administering
more than 1 mEq/kg NaHCO3 during CPR had a nega-
tive impact on long-term survival and neurologic out-
come. In another retrospective study associated with the
Brain Resuscitation Clinical Trial III [50], patients were
included in the study if they suffered out of hospital CA
and advanced cardiovascular life support (ACLS) was
initiated within 30 minutes by emergency medical ser-
vices. NaHCO3 administration was optional in the study
and was preferentially more frequently administered at
some institutions than others. Patients treated in the
“high NaHCO3” user sites had significantly better rates
of ROSC and neurologic outcomes. One potential con-
founder in this study is that the patients who received the
higher NaHCO3 doses also had a significantly shorter time
to initiation of ACLS (1.7 minutes). One prospective ran-
domized double-blinded clinical trial in 875 pre-hospital
CA patients showed empirical early administration of
NaHCO3 (1 mEq/kg) had no effect on overall outcomes
in brief (<5 minutes) and moderate (5-15 minutes) CA.
However, there was a trend toward improved outcome
in prolonged (>15 minutes) CA [52].
As of this writing, a search of the ClinicalTrials.gov

site for bicarbonate AND cardiac arrest reveals 1 human
trial that is not yet recruiting subjects (NCT01377337).
This study proposed to investigate the survival at CPR
termination impact resulting from IV administration of
1 mEq/kg NaHCO3 after the first IV dose of epinephrine
and up to 2 additional doses administered at 5 to 10 mi-
nute intervals during CPR.
The discouraging results of attempts to apply this ap-

proach from bench to bedside may be due to opposing
mechanisms of cellular action. High sodium may help by
eliminating H + via the antiporter, but intracellular Na +
accumulation may lead to decreased Ca2+ elimination
via the Na + −Ca2+ exchanger and Ca2+ accumulation
[47]. Ca2+ overload is associated with deleterious cellu-
lar consequences that may compromise anti-acidosis
protective effects. In addition, acidosis depends on the
patient’s medical status before arrest, along with the dur-
ation and efficacy of CPR. Treatment may be improved
by titration guided by venous or arterial pH measure-
ment. Arrest times longer than 15 minutes will most
likely not benefit from bicarbonate administration [47].
Therefore, NaHCO3 was recommended for use during
CA resuscitation in 1974 but was removed from the
CPR algorithm in 1986 secondary to the potential to
increase acidosis. The 1992 and 2000 AHA guidelines
de-emphasized the use of NaHCO3.

Anti-Inflammation
Neuroprotective strategies targeting inflammation have
been investigated extensively in ischemic stroke [53].
Considering persistent systemic inflammatory responses
after CA, anti-inflammation treatment may bring sys-
temic and neurologic benefit favoring improvement in
overall outcomes. Only a few anti-inflammation agents
have been tested in animal models of CA.

Fluoxetine Fluoxetine is a selective serotonin reuptake
inhibitor and has been shown to protect neurons
through anti-inflammatory effects in focal brain ischemia
[54]. In mouse models of CA and CPR, high dose
(10 mg/kg) but not low dose (5 mg/kg) fluoxetine was
associated with decreased histological damage in the
caudate putamen as well as decreased sensorimotor defi-
cits at 3 days when administered 30 minutes after ROSC
[55]. No difference in the hippocampus was observed
with either dose.

Matrix metalloproteinase-9 (MMP-9) inhibitor MMP-
9 activation plays an important role in blood–brain
barrier (BBB) disruption, resulting in brain edema and
inflammation following brain ischemia [53]. SB-3CT is a
specific inhibitor of MMP-9. In a rat model, CA was in-
duced by occlusion of the airway. CPR was started 1 minute
after CA onset. Compared to control CA rats, intraperito-
neal (IP) injections of SB-3CT at 5 minutes after ROSC
was associated with significantly reduced brain tissue ex-
pression of MMP-9 protein and messenger ribonucleic
acid, brain water content, Evans Blue content and cytokine
levels at 3, 9, 24 and 48 hours [56].

Influencing oxygen free radicals
Oxidative stress is a common final mechanism of injury
contributing to brain damage following CA and ROSC. Ex-
cessive production of free oxygen radicals associated with
ischemia and reperfusion injury causes cellular lipid and
protein degradation. Treatments with mechanisms that re-
duce free radicals in the brain may be neuroprotective.

Hyperoxic (100%) ventilation
Hyperoxic (100%) ventilation during CPR and early ROSC
is a traditional component of resuscitation and life support
strategies in CA patients. Emerging animal studies have
challenged the protective role of hyperoxia in the setting
of global brain ischemia with accumulating evidence of
aggravating oxidative damage. Dogs underwent 9 minutes
of CA followed by CPR and were randomized to resus-
citation with normoxia (21% FiO2), hyperoxia (100%
FiO2) or hyperoxia with antioxidant pretreatment [57]. The
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hyperoxia group had significantly worse neurologic out-
comes at 12 and 24 hours compared to both other groups.
These results were similar to those in dogs that underwent
10 minutes of CA followed by 3 minutes of open chest
CPR and defibrillation [58]. Normoxic dogs were given
room air during CPR and after ROSC were ventilated for
one hour using room air with higher inspired oxygen only
as needed to maintain arterial oxygen between 80 and
100 mm Hg. Hyperoxic dogs were given 100% O2 during
CPR and after ROSC for 1 hour with no FiO2 adjustments.
At 24 hours, dogs resuscitated with 21% O2 showed signifi-
cantly decreased oxidized lipids in the frontal cortex and
significantly better neurologic deficit scores compared to
the hyperoxic dogs [58]. A similar dog study showed a
hyperoxic group had significant increase in neuronal death
and oxidative damage when compared to normoxic resus-
citated (FiO2 21% for one hour, then adjusted to maintain
PaO2 between 80–120 mmHg) and shams at 2 and
24 hours after ROSC [59].
In another dog study, glucose metabolism impairment,

increase in neuronal death and neuroinflammation were
consistently associated with 100% FiO2 ventilation dur-
ing CPR and after ROSC, exacerbating neurologic deficit
[60]. In this study, after ROSC, dogs were ventilated with
either 100% FiO2 or room air for one hour. The hippo-
campi of hyperoxic dogs had decreased utilization of iso-
tope labeled glucose at 2 hours.
Retrospective analysis of data from controls in two

studies evaluating pigs that underwent 8 minutes of CA
followed by CPR was performed [61]. After ROSC, venti-
lation was with 100% FiO2 for 10 minutes or 60 minutes.
Hyperoxic pigs had a significantly increased number of
necrotic neurons and perivascular inflammation at 5 days
after ROSC. There was a trend toward improvement in
neurological deficit in the normoxic group but this did
not reach significance.
There is one prospective, randomized pilot study in

out-of-hospital CA patients with ventricular fibrillation
as an initial rhythm that demonstrated the safety of ven-
tilation with low inspiratory O2 concentration (FiO2 30-
40%) during one hour after ROSC [62]. The use of 100%
FiO2 may worsen neuronal injury during the early post-
resuscitation period in patients not treated by TH [62].
Patients with witnessed out-of-hospital CA were ran-
domized to receive 100% FiO2 or 30% FiO2 for 60 minutes
after ROSC. There was no statistically significant differ-
ence in biomarkers of neuronal injury (neuron-specific
enolase, NSE, and S-100) between groups up to 48 hours
after ROSC. In the subgroup of patients not treated with
TH after arrest, there was a significant decrease in
NSE among the patients treated with 30% FiO2 at
24 hours only. No long-term study has been conducted
to evaluate differences in neurologic outcomes in these
patients.
Translational use of reduced inspired O2 for all pa-
tients will be restricted due to the complexity of pre-
morbid conditions and complications associated with
CA. This low FiO2 approach is not feasible in situations
where poor oxygenation is likely to occur, for example
CA associated with pulmonary edema, near drowning,
severe aspiration of gastric contents or pulmonary infec-
tion [62].

Free radical scavengers
Free radical scavengers are drugs that can react with free
radicals and yield nonreactive products. Mixed success
in preclinical studies of various scavengers [63] and early
failures in some clinical trials have diminished early en-
thusiasm [64].

Methylene blue
Methylene blue has been investigated as an antioxidant
in the setting of CA. Methylene blue delivered with a
hypertonic hyperoncotic solution increased 4-hour sur-
vival and decreased plasma inflammatory markers in a
pig model of 12 minutes extended CA and 8 minutes of
resuscitation [65]. The same group further demonstrated
that methylene blue infusion during CPR and continued
for 50 minutes after ROSC significantly prevented the
disruption of the BBB often seen after ischemia and re-
perfusion [66], suggesting decreased nitric oxide metab-
olites. The protective mechanism of methylene blue was
also evaluated using the genomic response to CA and
treatment with methylene blue in the same study design
[67]. This concluded that neuroprotective effects of
methylene blue were diverse, involving regulation of sol-
uble guanylate cyclase and other responses that inhibit
apoptosis and decrease the inflammatory response.

Inhaled nitric oxide
Inhaled nitric oxide (iNO) inhibits and scavenges react-
ive oxygen species. Mice with varied expression of NO
synthase (NOS) underwent 9 minutes of potassium-
induced CA followed by CPR [68]. At 24 hours post re-
suscitation, mice deficient in NOS3 or soluble guanylate
cyclase alpha 1 had significantly poorer outcomes while
NOS3 deficient mice with cardiomyocyte specific over-
expression of NOS3 were protected from the neuro-
logical and cardiac dysfunction. It appears that iNO
works predominantly on soluble guanylate cyclase and
that deficiency of the alpha 1 subunit of this complex
undermines the protective effects of iNO.
In a similar mouse model of CA, iNO (40 ppm) at one

hour after CPR for 23 hours improved neurologic func-
tion at 4 days, LVEF, brain edema and 10-day survival
compared to room air mice [69]. The iNO treatment
also reduced water diffusion abnormality, caspase-3 acti-
vation and cytokine induction [69].
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Nitrite
During hypoxia and ischemia, nitrite is converted to
NO. In a mouse model of 12 minutes of asphyxia in-
duced CA and CPR, significant advantages in survival,
neurologic outcome and cardiac function were found in
mice treated with IV nitrite [70]. There was decreased
mitochondrial oxygen consumption and a reversible spe-
cific inhibition of respiratory chain complex 1 of the
mitochondria, thus tempering oxidative injury. A follow
up study utilized an 8-minute CA model [71]. At 7 days
post-ROSC, rats treated with nitrite had a significant
survival advantage and reduction in the death of CA-1
hippocampal neurons although not associated with signifi-
cant neurologic function benefit. This protection was as-
sociated with improved mitochondrial function after CA
and increased S-nitrosylation for pro-survival signaling.
Regarding clinical applications, establishing the safety

profile of these approaches will be necessary due to the
dual functional role of nitric oxide. By decreasing nitric
oxide metabolites, methylene blue is a potent vasocon-
strictor and thus may have limited clinical utility in
many patients. Nitric oxide or nitrite may induce sys-
temic vasodilation and hypotension that could preclude
their use in CA patients with an unstable hemodynamic
condition.
As of this writing, a search of the ClinicalTrials.gov site

for nitrite and cardiac arrest returns one trial that is recruit-
ing subjects (NCT01189359). This pilot study investigates
the survival following CA impact of 2 micromoles/kg nitrite
infusion during CPR. Early results show hemodynamic and
methemoglobinemia safety at current doses [71].

N-acetylcysteine (NAC)
NAC prevents depletion of glutathione in oxidative in-
jury [72], leading to protection against free radical injury
in the liver and lung [73,74]. However, NAC failed to
show benefits in a clinically relevant large animal model
of global brain ischemia secondary to CA [75]. Dogs
underwent 10 minutes of VF arrest followed by CPR.
NAC (150 mg/kg) treatment upon ROSC did not im-
prove neurologic deficit scores at 23 hours later. Given
that there are many triggers of neuronal injury and more
than one final common pathway of neuronal cell death,
combination therapies may be required to show functional
benefit after global cerebral ischemia. Further pre-clinical
research efforts using NAC in combination with other
neuroprotective agents may still be worth pursuing [75].

Improving cerebral hemodynamics
Intrathoracic pressure modulation during CPR
In order to improve cerebral perfusion, efforts have been
made to enhance CPR efficacy. The mechanical approach
using application of modified active compression-depression
(ACD) CPR assisted by an intrathoracic pressure regulator
(ITPR) and an inspiratory impedance threshold device
(ITD) benefitted coronary and cerebral perfusion pressures
in a series of pre-clinical studies.
Pigs that underwent VF arrest for 8 minutes were ran-

domized to regular CPR at 100 compressions per mi-
nutes or CPR with an ITPR, which combines an ITD
with a vacuum source to generate controlled 10 mm Hg
vacuum pressure in the trachea while allowing positive
pressure ventilation [76]. Use of ITPR during CPR im-
proved all hemodynamic parameters including coronary
and cerebral perfusion pressure, blood flow and short-
term survival (24 hour) without compromising oxygen-
ation and blood gases. ITPR + CPR increased coronary
and cerebral perfusion pressures during hypovolemic
CA. Intrathoracic pressure regulation during CPR was
re-evaluated in pigs that underwent 8 minutes of VF ar-
rest followed by either standard CPR (S-CPR) at 80
compressions per minute or ACD CPR at 80 compres-
sions per minute plus an ITD (ACD CPR + ITD) [77].
The ACD CPR + ITD group showed significantly im-
proved coronary and cerebral perfusion pressures and
improved carotid artery blood flow. ACD CPR + ITD
also had significant survival and positive neurologic out-
come advantage at 24 hours post-ischemia when com-
pared to animals that had S-CPR.
Although the results from two human studies are not

conclusive, ACD CPR + ITD may help improve survival
to hospital discharge and short-term neurologic out-
comes. In a prospective controlled trial in Germany, pa-
tients suffering out-of-hospital CA were randomized to
S-CPR or ACD CPR + ITD [78]. Patients in the ACD
CPR + ITD group had significantly improved 1 hour and
24 hour survival rates. There was no significant differ-
ence in the number of patients that survived to hospital
discharge or neurologic score at hospital discharge, al-
though there was a trend towards improved neurologic
score in the ACD CPR + ITD group. A study evaluated
standard chest compressions during CPR versus ACD
CPR + ITD in patients suffering out-of-hospital CA [79].
Survival to hospital discharge with favorable neurologic
outcome was significantly better in the ACD CPR + ITD
group, as was survival to one year. However, neurologic
outcome at one year was similar in all survivors.
Co-administration of the vasodilator sodium nitro-

prusside appears to further enhance cardiovascular and
cerebral hemodynamics [80-82], but these effects have
not been validated in randomized patient studies. So-
dium nitroprusside (SNP)-enhanced CPR (SNPeCPR)
involved ACD CPR with ITD, external application of
abdominal force and 1 mg of nitroprusside injection.
Pigs underwent 6 minutes of VF followed by CPR [81].
Animals were randomized to one of two groups for
15 minutes of CPR: S-CPR or 5 minutes of S-CPR +
SNP then 5 minutes of ACD CPR + ITD + SNP then
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5 minutes of ACD CPR + ITD + SNP + abdominal bind-
ing (AB). The control group had a significantly worse
ROSC while ACD CPR + ITD + SNP + AB showed sig-
nificantly elevated carotid blood flow when compared
to S-CPR. The addition of SNP to CPR did not signifi-
cantly alter cerebral or coronary perfusion pressures,
but did improve carotid artery blood flow. Using the same
experimental protocol, significantly improved 24-hour
survival, neurologic functional recovery and LVEF were
also found in SNPeCPR pigs compared to S-CPR alone
[80]. The authors suggested the provocative mechanism
was release of nitric oxide causing vasodilation and in-
creasing perfusion to the heart and brain. It is not clear
how much of the benefit was secondary to SNP and how
much to ACD + ITD. The follow-up study from the same
group might help answer this question, although not dir-
ectly addressing neurologic functional recovery [82]. The
study used two protocols. The first protocol randomized
pigs to S-CPR, ACD CPR + ITD, or SNPeCPR. Following
15 minutes of VF arrest, CPR was begun and defibrillation
first attempted at 6 minutes of CPR. SNPeCPR pigs had
significantly better rates of ROSC compared to both other
groups (12/12 vs. 0/6 and 0/6). In the second protocol,
pigs underwent 10 minutes of VF arrest and were then
put into pulseless electrical activity followed by S-CPR or
SNPeCPR. SNPeCPR pigs had significantly improved
ROSC. In both protocols SNPeCPR had enhanced coron-
ary perfusion pressure, carotid blood flow, cerebral perfu-
sion pressure and end-tidal carbon dioxide.

Hypertonic saline hydroxyethyl starch
Early intervention using hypertonic saline hydroxyethyl
starch showed some improvement in cerebral blood flow
but did not ultimately translate to neurologic benefits in
a pre-clinical study using a CA model. The proposed
mechanism is that hypertonic saline hydroxyethyl starch
improves perfusion, decreases intracranial pressure and
decreases brain edema. Rats were exposed to asphyxia
induced CA and resuscitation then randomized to re-
ceive placebo or 7.5% saline/6% hydroxyethyl starch
[83]. The treatment group had increased early cerebral
blood flow, but no improvements in 7-day survival,
neurologic outcome or neuronal cell death were found.

Conclusions
Neurocognitive deficits remain a significant source of
morbidity and mortality in patients who survive cardiac
arrest. Establishing therapeutic options that can be im-
plemented during and after CPR to decrease these
neurologic functional deficits is warranted. In addition
to therapeutic hypothermia, a number of other modal-
ities involving different mechanisms of action have been
tested mainly in the pre-clinical setting using short-term
outcomes. To summarize some preliminary conclusions:
1. Xenon and argon modulate neuronal cell death path-
ways, cross the BBB efficiently and have fast onset mak-
ing them good candidates for neuroprotection in the
setting of cardiac arrest but further study is needed to
explore the ideal dosage, initiation time and duration of
their applications; 2. Ischemic post conditioning reduces
reperfusion injury and may be practical for clinical transla-
tion; 3. CPR assisted by active compression-decompression
or intrathoracic pressure regulation favors cerebral perfu-
sion; 4. 100% hyperoxia ventilation appears to be harmful
after resuscitation.
Several approaches have been evaluated in cardiac arrest

patients in limited fashion and the effects on neuroprotec-
tion are inconclusive. In addition to further clinical trials
evaluating therapeutic neuroprotective treatments, the
systemic effects of treatment modalities will also need to
be considered as the effects of cardiac arrest and CPR are
not isolated but rather have diffuse systemic ramifications.

Abbreviations
AB: Abdominal binding; ACD: Active compression-decompression;
ACLS: Advanced cardiovascular life support; BBB: Blood brain barrier; CA: Cardiac
arrest; CPR: Cardiopulmonary resuscitation; CVT: Cardioprotective vasodilator
therapy; FiO2: Fraction of inspired oxygen; ICV: Intracerebroventricular;
iNO: Inhaled nitric oxide; IP: Intraperitoneal; IPC: Ischemic post-conditioning;
ITD: Intrathoracic pressure regulator; ITPR: Impedance threshold device;
IV: Intravenous; MMP-9: Matrix metalloproteinase-9; NAC: N-acetylcysteine;
NMDA: N-methyl-D-aspartate; NOS: Nitric oxide synthase; ROSC: Restoration of
spontaneous circulation; S-CPR: Standard CPR; SNP: Sodium nitroprusside;
SNPeCPR: Sodium nitroprusside SNP-enhanced CPR; TH: Therapeutic
hypothermia; VF: Ventricular fibrillation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LH participated in design, literature search, evaluation of papers for inclusion
and writing of this review. DBM participated in literature search, evaluation of
papers for inclusion and writing this review. PMA participated in evaluation of
papers for inclusion and writing of this review. JWG participated in literature
search, evaluation of papers for inclusion and revision of this review. JHZ
participated in the design and revision of this review. RLA participated in
design, literature search, evaluation of papers for inclusion and writing of this
review. All authors read and approved the final manuscript.

Authors’ information
LH MD, Assistant Professor, Basic Sciences, Division of Physiology and
Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA.
DBM, MD, Fellow in Adult Cardiothoracic Anesthesiology, Department of
Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA.
PMA MD, Associate Professor of Medicine, Cardiology, Loma Linda University
School of Medicine, Loma Linda, CA.
JWG MD, Assistant Professor of Anesthesiology, Loma Linda University
School of Medicine, Loma Linda, CA.
JHZ MD, PhD, FAHA, Professor of Neurosurgery, Anesthesiology, Basic
Science, Division of Physiology, Director of Neuroscience Research, Associate
Chair and Physiology Graduate Program Coordinator, Loma Linda University
School of Medicine, Loma Linda, CA.
RLA MD, Professor of Anesthesiology, Loma Linda University School of
Medicine, Loma Linda, CA.

Author details
1Department of Anesthesiology, Loma Linda University School of Medicine,
Loma Linda University Medical Center, Room 2532, 11234 Anderson Street,
Loma Linda, CA 92354, USA. 2Department of Basic Sciences, Division of
Physiology, Loma Linda University School of Medicine, 11041 Campus Street,



Mangus et al. Medical Gas Research 2014, 4:9 Page 12 of 14
http://www.medicalgasresearch.com/content/4/1/9
Loma Linda, CA, USA. 3Department of Cardiology, Loma Linda University
School of Medicine, 11201 Benton St, Loma Linda, CA 92354, USA.
4Department of Neurosurgery, Loma Linda University School of Medicine,
11041 Campus Street, Loma Linda, CA 92354, USA.

Received: 16 January 2014 Accepted: 25 March 2014
Published: 1 May 2014

References
1. Laver S, Farrow C, Turner D, Nolan J: Mode of Death after Admission to an

Intensive Care Unit Following Cardiac Arrest. Intensive Care Med 2004,
30:2126–2128.

2. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C,
Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr,
Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP,
Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T: Post-
Cardiac Arrest Syndrome: Epidemiology, Pathophysiology, Treatment,
and Prognostication. A Consensus Statement from the International
Liaison Committee on Resuscitation (American Heart Association,
Australian and New Zealand Council on Resuscitation, European
Resuscitation Council, Heart and Stroke Foundation of Canada,
Interamerican Heart Foundation, Resuscitation Council of Asia, and
the Resuscitation Council of Southern Africa); the American Heart
Association Emergency Cardiovascular Care Committee; the Council on
Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary,
Perioperative, and Critical Care; the Council on Clinical Cardiology; and
the Stroke Council. Circulation 2008, 118:2452–2483.

3. Nichol G, Aufderheide TP, Eigel B, Neumar RW, Lurie KG, Bufalino VJ,
Callaway CW, Menon V, Bass RR, Abella BS, Sayre M, Dougherty CM, Racht
EM, Kleinman ME, O’Connor RE, Reilly JP, Ossmann EW, Peterson E, merican
Heart Association Emergency Cardiovascular Care C, Council on
Arteriosclerosis T, Vascular B, Council on Cardiopulmonary CCP,
Resuscitation, Council on Cardiovascular N, Council on Clinical C, Advocacy
C, Council on Quality of C, Outcomes R: Regional Systems of Care for
out-of-Hospital Cardiac Arrest: A Policy Statement from the American
Heart Association. Circulation 2010, 121:709–729.

4. Roine RO, Kajaste S, Kaste M: Neuropsychological Sequelae of Cardiac
Arrest. JAMA 1993, 269:237–242.

5. Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL,
Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL,
Kronick SL, American Heart A: Part 9: Post-Cardiac Arrest Care: 2010
American Heart Association Guidelines for Cardiopulmonary Resuscitation
and Emergency Cardiovascular Care. Circulation 2010, 122:S768–S786.

6. Bernard S: Hypothermia after Cardiac Arrest: Expanding the Therapeutic
Scope. Crit Care Med 2009, 37:S227–S233.

7. Puttgen HA, Pantle H, Geocadin RG: Management of Cardiac Arrest Patients
to Maximize Neurologic Outcome. Curr Opin Crit Care 2009, 15:118–124.

8. Wu TC, Grotta JC: Hypothermia for Acute Ischaemic Stroke. Lancet Neurol
2013, 12:275–284.

9. Madl C, Holzer M: Brain Function after Resuscitation from Cardiac Arrest.
Curr Opin Crit Care 2004, 10:213–217.

10. Namura S, Ooboshi H, Liu J, Yenari MA: Neuroprotection after Cerebral
Ischemia. Ann N Y Acad Sci 2013, 1278:25–32.

11. Nishikawa T, Kirsch JR, Koehler RC, Miyabe M, Traystman RJ: Competitive
N-Methyl-D-Aspartate Receptor Blockade Reduces Brain Injury Following
Transient Focal Ischemia in Cats. Stroke 1994, 25:2258–2264.

12. Crumrine RC, LaManna JC: Regional Cerebral Metabolites, Blood Flow,
Plasma Volume, and Mean Transit Time in Total Cerebral Ischemia in the
Rat. J Cereb Blood Flow Metab 1991, 11:272–282.

13. Pulsinelli WA, Brierley JB, Plum F: Temporal Profile of Neuronal Damage in
a Model of Transient Forebrain Ischemia. Ann Neurol 1982, 11:491–498.

14. Petito CK, Feldmann E, Pulsinelli WA, Plum F: Delayed Hippocampal
Damage in Humans Following Cardiorespiratory Arrest. Neurology 1987,
37:1281–1286.

15. Sterz F, Leonov Y, Safar P, Radovsky A, Stezoski SW, Reich H, Shearman GT,
Greber TF: Effect of Excitatory Amino Acid Receptor Blocker Mk-801 on
Overall, Neurologic, and Morphologic Outcome after Prolonged Cardiac
Arrest in Dogs. Anesthesiology 1989, 71:907–918.

16. Helfaer MA, Ichord RN, Martin LJ, Hurn PD, Castro A, Traystman RJ:
Treatment with the Competitive NMDA Antagonist Gpi 3000 Does Not
Improve Outcome after Cardiac Arrest in Dogs. Stroke 1998, 29:824–829.
17. Fix AS, Horn JW, Wightman KA, Johnson CA, Long GG, Storts RW, Farber N,
Wozniak DF, Olney JW: Neuronal Vacuolization and Necrosis Induced by
the Noncompetitive N-Methyl-D-Aspartate (NMDA) Antagonist Mk(+)801
(Dizocilpine Maleate): A Light and Electron Microscopic Evaluation of the
Rat Retrosplenial Cortex. Exp Neurol 1993, 123:204–215.

18. Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA: NMDA
Antagonist Neurotoxicity: Mechanism and Prevention. Science 1991,
254:1515–1518.

19. Lipton SA: Failures and successes of NMDA receptor antagonists: molecular
basis for the use of open-channel blockers like memantine in the treatment
of acute and chronic neurological insults. NeuroRx 2004, 1:101–110.

20. Wiard RP, Dickerson MC, Beek O, Norton R, Cooper BR: Neuroprotective
Properties of the Novel Antiepileptic Lamotrigine in a Gerbil Model of
Global Cerebral Ischemia. Stroke 1995, 26:466–472.

21. Crumrine RC, Bergstrand K, Cooper AT, Faison WL, Cooper BR: Lamotrigine
Protects Hippocampal Ca1 Neurons from Ischemic Damage after Cardiac
Arrest. Stroke 1997, 28:2230–2236.

22. Cheung H, Kamp D, Harris E: An in Vitro Investigation of the Action of
Lamotrigine on Neuronal Voltage-Activated Sodium Channels. Epilepsy
Res 1992, 13:107–112.

23. Ayoub IM, Radhakrishnan J, Gazmuri RJ: Targeting Mitochondria for
Resuscitation from Cardiac Arrest. Crit Care Med 2008, 36:S440–S446.

24. Yamakura T, Harris RA: Effects of Gaseous Anesthetics Nitrous Oxide and
Xenon on Ligand-Gated Ion Channels. Comparison with Isoflurane and
Ethanol. Anesthesiology 2000, 93:1095–1101.

25. Palmer GC, Widzowski D: Low Affinity Use-Dependent Nmda Receptor
Antagonists Show Promise for Clinical Development. Amino Acids 2000,
19:151–155.

26. Fries M, Coburn M, Nolte KW, Timper A, Kottmann K, Kuru TH, Weis J,
Rossaint R: Early Administration of Xenon or Isoflurane May Not Improve
Functional Outcome and Cerebral Alterations in a Porcine Model of
Cardiac Arrest. Resuscitation 2009, 80:584–590.

27. Abraini JH, Kriem B, Balon N, Rostain JC, Risso JJ: Gamma-Aminobutyric
Acid Neuropharmacological Investigations on Narcosis Produced by
Nitrogen, Argon, or Nitrous Oxide. Anesth Analg 2003, 96:746–749.

28. Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, Grocott HP: The
Neuroprotective Effect of Xenon Administration During Transient Middle
Cerebral Artery Occlusion in Mice. Anesthesiology 2003, 99:876–881.

29. Ma D, Hossain M, Chow A, Arshad M, Battson RM, Sanders RD, Mehmet H,
Edwards AD, Franks NP, Maze M: Xenon and Hypothermia Combine to
Provide Neuroprotection from Neonatal Asphyxia. Ann Neurol 2005,
58:182–193.

30. Fries M, Brucken A, Cizen A, Westerkamp M, Lower C, Deike-Glindemann J,
Schnorrenberger NK, Rex S, Coburn M, Nolte KW, Weis J, Rossaint R, Derwall
M: Combining Xenon and Mild Therapeutic Hypothermia Preserves
Neurological Function after Prolonged Cardiac Arrest in Pigs. Crit Care
Med 2012, 40:1297–1303.

31. Fries M, Nolte KW, Coburn M, Rex S, Timper A, Kottmann K, Siepmann K,
Hausler M, Weis J, Rossaint R: Xenon Reduces Neurohistopathological
Damage and Improves the Early Neurological Deficit after Cardiac Arrest
in Pigs. Crit Care Med 2008, 36:2420–2426.

32. Derwall M, Timper A, Kottmann K, Rossaint R, Fries M: Neuroprotective
Effects of the Inhalational Anesthetics Isoflurane and Xenon after
Cardiac Arrest in Pigs. Crit Care Med 2008, 36:S492–S495.

33. Brucken A, Cizen A, Fera C, Meinhardt A, Weis J, Nolte K, Rossaint R, Pufe T,
Marx G, Fries M: Argon Reduces Neurohistopathological Damage and
Preserves Functional Recovery after Cardiac Arrest in Rats. Br J Anaesth
2013, 110(Suppl 1):i106–i112.

34. Ristagno G, Fumagalli F, Russo I, Tantillo S, Zani DD, Locatelli V, De Maglie
M, Novelli D, Staszewsky L, Vago T, Belloli A, Di Giancamillo M, Fries M,
Masson S, Scanziani E, Latini R: Post-Resuscitation Treatment with Argon
Improves Early Neurological Recovery in a Porcine Model of Cardiac
Arrest. Shock 2014, 41:72–78.

35. Zhuang L, Yang T, Zhao H, Fidalgo AR, Vizcaychipi MP, Sanders RD, Yu B,
Takata M, Johnson MR, Ma D: The Protective Profile of Argon, Helium, and
Xenon in a Model of Neonatal Asphyxia in Rats. Crit Care Med 2012,
40:1724–1730.

36. Yamamoto S, Matsui K, Ohashi N: Protective Effect of Na+/H + Exchange
Inhibitor, Sm-20550, on Impaired Mitochondrial Respiratory Function
and Mitochondrial Ca2+ Overload in Ischemic/Reperfused Rat Hearts.
J Cardiovasc Pharmacol 2002, 39:569–575.



Mangus et al. Medical Gas Research 2014, 4:9 Page 13 of 14
http://www.medicalgasresearch.com/content/4/1/9
37. Borutaite V, Brown GC: Mitochondria in Apoptosis of Ischemic Heart. FEBS
Lett 2003, 541:1–5.

38. Morrison LJ, Neumar RW, Zimmerman JL, Link MS, Newby LK, McMullan PW
Jr, Hoek TV, Halverson CC, Doering L, Peberdy MA, Edelson DP, American
Heart Association Emergency Cardiovascular Care Committee CoCCCP,
Resuscitation CoC, Stroke Nursing CoCC, Council on P: Strategies for
Improving Survival after in-Hospital Cardiac Arrest in the United States:
2013 Consensus Recommendations: A Consensus Statement from the
American Heart Association. Circulation 2013, 127:1538–1563.

39. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D,
Ovize M: Specific Inhibition of the Mitochondrial Permeability Transition
Prevents Lethal Reperfusion Injury. J Mol Cell Cardiol 2005, 38:367–374.

40. Cour M, Loufouat J, Paillard M, Augeul L, Goudable J, Ovize M, Argaud L:
Inhibition of Mitochondrial Permeability Transition to Prevent the Post-
Cardiac Arrest Syndrome: A Pre-Clinical Study. Eur Heart J 2011, 32:226–235.

41. Crompton M: Mitochondrial Intermembrane Junctional Complexes and
Their Role in Cell Death. J Physiol 2000, 529(Pt 1):11–21.

42. Segal N, Matsuura T, Caldwell E, Sarraf M, McKnite S, Zviman M, Aufderheide
TP, Halperin HR, Lurie KG, Yannopoulos D: Ischemic Postconditioning at
the Initiation of Cardiopulmonary Resuscitation Facilitates Functional
Cardiac and Cerebral Recovery after Prolonged Untreated Ventricular
Fibrillation. Resuscitation 2012, 83:1397–1403.

43. Yannopoulos D, Segal N, Matsuura T, Sarraf M, Thorsgard M, Caldwell E,
Rees J, McKnite S, Santacruz K, Lurie KG: Ischemic Post-Conditioning and
Vasodilator Therapy During Standard Cardiopulmonary Resuscitation to
Reduce Cardiac and Brain Injury after Prolonged Untreated Ventricular
Fibrillation. Resuscitation 2013, 84:1143–1149.

44. Cho S, Liu D, Gonzales C, Zaleska MM, Wood A: Temporal Assessment of
Caspase Activation in Experimental Models of Focal and Global
Ischemia. Brain Res 2003, 982:146–155.

45. Wiessner C, Sauer D, Alaimo D, Allegrini PR: Protective Effect of a Caspase
Inhibitor in Models for Cerebral Ischemia in Vitro and in Vivo. Cell Mol
Biol (Noisy-le-grand) 2000, 46:53–62.

46. Teschendorf P, Vogel P, Wippel A, Krumnikl JJ, Spohr F, Bottiger BW, Popp E:
The Effect of Intracerebroventricular Application of the Caspase-3 Inhibitor
Zdevd-Fmk on Neurological Outcome and Neuronal Cell Death after
Global Cerebral Ischaemia Due to Cardiac Arrest in Rats. Resuscitation
2008, 78:85–91.

47. Vukmir RB, Bircher N, Safar P: Sodium Bicarbonate in Cardiac Arrest: A
Reappraisal. Am J Emerg Med 1996, 14:192–206.

48. Vukmir RB, Bircher NG, Radovsky A, Safar P: Sodium Bicarbonate May
Improve Outcome in Dogs with Brief or Prolonged Cardiac Arrest.
Crit Care Med 1995, 23:515–522.

49. Katz LM, Wang Y, Rockoff S, Bouldin TW: Low-Dose Carbicarb Improves
Cerebral Outcome after Asphyxial Cardiac Arrest in Rats. Ann Emerg Med
2002, 39:359–365.

50. Bar-Joseph G, Abramson NS, Kelsey SF, Mashiach T, Craig MT, Safar P, Brain
Resuscitation Clinical Trial IIISG: Improved Resuscitation Outcome in
Emergency Medical Systems with Increased Usage of Sodium
Bicarbonate during Cardiopulmonary Resuscitation. Acta Anaesthesiol
Scand 2005, 49:6–15.

51. Delooz HH, Lewi PJ: Are Inter-Center Differences in Ems-Management
and Sodium-Bicarbonate Administration Important for the Outcome of
Cpr? The Cerebral Resuscitation Study Group. Resuscitation 1989,
17(Suppl):S161–172.

52. Vukmir RB, Katz L, Sodium Bicarbonate Study G: Sodium Bicarbonate
Improves Outcome in Prolonged Prehospital Cardiac Arrest. Am J Emerg
Med 2006, 24:156–161.

53. Lakhan SE, Kirchgessner A, Hofer M: Inflammatory Mechanisms in Ischemic
Stroke: Therapeutic Approaches. J Transl Med 2009, 7:97.

54. Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK: Fluoxetine Affords
Robust Neuroprotection in the Postischemic Brain Via Its Anti-
Inflammatory Effect. J Neurosci Res 2009, 87:1037–1045.

55. Taguchi N, Nakayama S, Tanaka M: Fluoxetine Has Neuroprotective Effects
after Cardiac Arrest and Cardiopulmonary Resuscitation in Mouse.
Resuscitation 2012, 83:652–656.

56. He ZJ, Huang ZT, Chen XT, Zou ZJ: Effects of Matrix Metalloproteinase 9
Inhibition on the Blood Brain Barrier and Inflammation in Rats Following
Cardiopulmonary Resuscitation. Chin Med J (Engl) 2009, 122:2346–2351.

57. Zwemer CF, Whitesall SE, D’Alecy LG: Cardiopulmonary-Cerebral
Resuscitation with 100% Oxygen Exacerbates Neurological Dysfunction
Following Nine Minutes of Normothermic Cardiac Arrest in Dogs.
Resuscitation 1994, 27:159–170.

58. Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G:
Normoxic Ventilation after Cardiac Arrest Reduces Oxidation of Brain
Lipids and Improves Neurological Outcome. Stroke 1998, 29:1679–1686.

59. Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G: Normoxic
Resuscitation after Cardiac Arrest Protects against Hippocampal
Oxidative Stress, Metabolic Dysfunction, and Neuronal Death. J Cereb
Blood Flow Metab 2006, 26:821–835.

60. Richards EM, Fiskum G, Rosenthal RE, Hopkins I, McKenna MC: Hyperoxic
Reperfusion after Global Ischemia Decreases Hippocampal Energy
Metabolism. Stroke 2007, 38:1578–1584.

61. Brucken A, Kaab AB, Kottmann K, Rossaint R, Nolte KW, Weis J, Fries M:
Reducing the Duration of 100% Oxygen Ventilation in the Early
Reperfusion Period after Cardiopulmonary Resuscitation Decreases
Striatal Brain Damage. Resuscitation 2010, 81:1698–1703.

62. Kuisma M, Boyd J, Voipio V, Alaspaa A, Roine RO, Rosenberg P: Comparison
of 30 and the 100% Inspired Oxygen Concentrations During Early Post-
Resuscitation Period: A Randomised Controlled Pilot Study. Resuscitation
2006, 69:199–206.

63. Traystman RJ, Kirsch JR, Koehler RC: Oxygen Radical Mechanisms of Brain
Injury Following Ischemia and Reperfusion. J Appl Physiol (1985) 1991,
71:1185–1195.

64. Randomized A: Trial of Tirilazad Mesylate in Patients with Acute Stroke
(Ranttas). The Ranttas Investigators. Stroke 1996, 27:1453–1458.

65. Miclescu A, Basu S, Wiklund L: Methylene Blue Added to a Hypertonic-
Hyperoncotic Solution Increases Short-Term Survival in Experimental
Cardiac Arrest. Crit Care Med 2006, 34:2806–2813.

66. Sharma HS, Miclescu A, Wiklund L: Cardiac Arrest-Induced Regional
Blood–brain Barrier Breakdown, Edema Formation and Brain Pathology:
A Light and Electron Microscopic Study on a New Model for Neurode-
generation and Neuroprotection in Porcine Brain. J Neural Transm 2011,
118:87–114.

67. Martijn C, Wiklund L: Effect of Methylene Blue on the Genomic Response
to Reperfusion Injury Induced by Cardiac Arrest and Cardiopulmonary
Resuscitation in Porcine Brain. BMC Med Genomics 2010, 3:27.

68. Nishida T, Yu JD, Minamishima S, Sips PY, Searles RJ, Buys ES, Janssens S,
Brouckaert P, Bloch KD, Ichinose F: Protective Effects of Nitric Oxide
Synthase 3 and Soluble Guanylate Cyclase on the Outcome of Cardiac
Arrest and Cardiopulmonary Resuscitation in Mice. Crit Care Med 2009,
37:256–262.

69. Minamishima S, Kida K, Tokuda K, Wang H, Sips PY, Kosugi S, Mandeville JB,
Buys ES, Brouckaert P, Liu PK, Liu CH, Bloch KD, Ichinose F: Inhaled Nitric
Oxide Improves Outcomes after Successful Cardiopulmonary
Resuscitation in Mice. Circulation 2011, 124:1645–1653.

70. Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP,
Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT: Nitrite Therapy
after Cardiac Arrest Reduces Reactive Oxygen Species Generation,
Improves Cardiac and Neurological Function, and Enhances Survival Via
Reversible Inhibition of Mitochondrial Complex I. Circulation 2009,
120:897–905.

71. Dezfulian C, Alekseyenko A, Dave KR, Raval AP, Do R, Kim F, Perez-Pinzon
MA: Nitrite Therapy Is Neuroprotective and Safe in Cardiac Arrest
Survivors. Nitric Oxide 2012, 26:241–250.

72. Egawa K, Yoshiwara M, Nose K: Effect of Radical Scavengers on Tnf Alpha-
Mediated Activation of the Upa in Cultured Cells. Experientia 1994,
50:958–962.

73. Davreux CJ, Soric I, Nathens AB, Watson RW, McGilvray ID, Suntres ZE, Shek
PN, Rotstein OD: N-Acetyl Cysteine Attenuates Acute Lung Injury in the
Rat. Shock 1997, 8:432–438.

74. Fukuzawa K, Emre S, Senyuz O, Acarli K, Schwartz ME, Miller CM: N-
Acetylcysteine Ameliorates Reperfusion Injury after Warm Hepatic
Ischemia. Transplantation 1995, 59:6–9.

75. Silbergleit R, Haywood Y, Fiskum G, Rosenthal RE: Lack of a
Neuroprotective Effect from N-Acetylcysteine after Cardiac Arrest and
Resuscitation in a Canine Model. Resuscitation 1999, 40:181–186.

76. Yannopoulos D, Nadkarni VM, McKnite SH, Rao A, Kruger K, Metzger A,
Benditt DG, Lurie KG: Intrathoracic Pressure Regulator During Continuous-
Chest-Compression Advanced Cardiac Resuscitation Improves Vital
Organ Perfusion Pressures in a Porcine Model of Cardiac Arrest.
Circulation 2005, 112:803–811.



Mangus et al. Medical Gas Research 2014, 4:9 Page 14 of 14
http://www.medicalgasresearch.com/content/4/1/9
77. Metzger AK, Herman M, McKnite S, Tang W, Yannopoulos D: Improved
Cerebral Perfusion Pressures and 24-Hr Neurological Survival in a Porcine
Model of Cardiac Arrest with Active Compression-Decompression
Cardiopulmonary Resuscitation and Augmentation of Negative
Intrathoracic Pressure. Crit Care Med 2012, 40:1851–1856.

78. Wolcke BB, Mauer DK, Schoefmann MF, Teichmann H, Provo TA, Lindner KH,
Dick WF, Aeppli D, Lurie KG: Comparison of Standard Cardiopulmonary
Resuscitation Versus the Combination of Active Compression-
Decompression Cardiopulmonary Resuscitation and an Inspiratory
Impedance Threshold Device for out-of-Hospital Cardiac Arrest.
Circulation 2003, 108:2201–2205.

79. Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier
RM, Olinger ML, Holcomb RG, Tupper DE, Yannopoulos D, Lurie KG:
Standard Cardiopulmonary Resuscitation Versus Active Compression-
Decompression Cardiopulmonary Resuscitation with Augmentation of
Negative Intrathoracic Pressure for out-of-Hospital Cardiac Arrest: A
Randomised Trial. Lancet 2011, 377:301–311.

80. Schultz J, Segal N, Kolbeck J, Caldwell E, Thorsgard M, McKnite S,
Aufderheide TP, Lurie KG, Yannopoulos D: Sodium Nitroprusside Enhanced
Cardiopulmonary Resuscitation Prevents Post-Resuscitation Left
Ventricular Dysfunction and Improves 24-Hour Survival and
Neurological Function in a Porcine Model of Prolonged Untreated
Ventricular Fibrillation. Resuscitation 2011, 82(Suppl 2):S35–40.

81. Schultz J, Segal N, Kolbeck J, McKnite S, Caldwell E, Yannopoulos D: Sodium
Nitroprusside Enhanced Cardiopulmonary Resuscitation (Snpecpr)
Improves Vital Organ Perfusion Pressures and Carotid Blood Flow in a
Porcine Model of Cardiac Arrest. Resuscitation 2012, 83:374–377.

82. Schultz JC, Segal N, Caldwell E, Kolbeck J, McKnite S, Lebedoff N, Zviman M,
Aufderheide TP, Yannopoulos D: Sodium Nitroprusside-Enhanced
Cardiopulmonary Resuscitation Improves Resuscitation Rates after
Prolonged Untreated Cardiac Arrest in Two Porcine Models. Crit Care Med
2011, 39:2705–2710.

83. Noppens RR, Kelm RF, Lindemann R, Engelhard K, Werner C, Kempski O:
Effects of a Single-Dose Hypertonic Saline Hydroxyethyl Starch on
Cerebral Blood Flow, Long-Term Outcome, Neurogenesis, and Neuronal
Survival after Cardiac Arrest and Cardiopulmonary Resuscitation in Rats.
Crit Care Med 2012, 40:2149–2156.

doi:10.1186/2045-9912-4-9
Cite this article as: Mangus et al.: A systematic review of
neuroprotective strategies after cardiac arrest: from bench to bedside
(Part I – Protection via specific pathways). Medical Gas Research 2014 4:9.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Literature search method

	Review
	Modulation of neuronal cell death pathway(s)
	Anti-excitatory amino acid toxicity
	Anti-apoptosis
	Anti-Inflammation

	Influencing oxygen free radicals
	Hyperoxic (100%) ventilation

	Free radical scavengers
	Methylene blue
	Inhaled nitric oxide
	Nitrite
	N-acetylcysteine (NAC)

	Improving cerebral hemodynamics
	Intrathoracic pressure modulation during CPR
	Hypertonic saline hydroxyethyl starch


	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Author details
	References

