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Abstract

Background: b-Amyloid protein (Ab) has been shown to potentiate the caspase-3 activation induced by the
commonly used inhalation anesthetic isoflurane. However, it is unknown whether reduction in Ab levels can
attenuate the isoflurane-induced caspase-3 activation. We therefore set out to determine the effects of RNA
interference-mediated silencing of amyloid precursor protein (APP) and b-site APP-cleaving enzyme (BACE) on the
levels of Ab and the isoflurane-induced caspase-3 activation.

Methods: H4 human neuroglioma cells stably transfected to express full-length human APP (H4-APP cells) were
treated with small interference RNAs (siRNAs) targeted at silencing BACE and APP for 48 hours. The cells were then
treated with 2% isoflurane for six hours. The levels of BACE, APP, and caspase-3 were determined using Western
blot analysis. Sandwich Enzyme-linked immunosorbent assay (ELISA) was used to determine the extracellular Ab
levels in the conditioned cell culture media.

Results: Here we show for the first time that treatment with BACE and APP siRNAs can decrease levels of BACE,
full-length APP, and APP c-terminal fragments. Moreover, the treatment attenuates the Ab levels and the
isoflurane-induced caspase-3 activation. These results further suggest a potential role of Ab in the isoflurane-
induced caspase-3 activation such that the reduction in Ab levels attenuates the isoflurane-induced caspase-3
activation.

Conclusion: These findings will lead to more studies which aim at illustrating the underlying mechanism by which
isoflurane and other anesthetics may affect Alzheimer’s disease neuropathogenesis.

Background
Alzheimer’s disease (AD), one of the most common
forms of dementia, affects 4.5 million Americans and
costs more than $100 billion a year on direct care alone.
Its impact will only increase in the coming decades. AD
is an insidious and progressive neurodegenerative disor-
der and is characterized by global cognitive decline,
robust accumulation of amyloid deposits, and neurofi-
brillary tangles in the brain [reviewed in [1]]. Genetic
evidence, confirmed by neuropathological and biochem-
ical findings, indicates that excessive production and/or

accumulation of b-amyloid protein (Ab) play a funda-
mental role in the pathology of AD [reviewed by [1,2]].
Ab is produced from amyloid precursor protein (APP)
through proteolytic processing by the aspartyl protease
b-site APP-cleaving enzyme (BACE) and g-secretase
[reviewed in [3]].
Increasing evidence suggests a role for caspase activa-

tion and apoptosis in AD neuropathogenesis [[4-13],
reviewed in [14,15]]. There has been debate in regards
to the contribution of apoptosis to neuronal loss in AD
because the apoptotic markers are rarely detected in the
brain of AD patients [reviewed in [16,17]]. However,
this could be due to the long duration of AD and very
rapid clearance of apoptotic cells from organs. Recent
studies employing antibodies that specifically recognize
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caspase-cleaved substrates have shown that caspase-3-
cleaved-actins, caspase-3-cleaved fragments, and cas-
pase-cleaved-APPs are present in AD patients’ brains
[18-31]. Western blot analysis has also revealed
increased caspase-3 immunoreactivity in AD versus con-
trol brains [24,32,33]. In addition, activated caspase-6
and caspase-9 have been detected in AD brains [25,26].
An estimated 200 million patients worldwide

undergo anesthesia and surgery each year [34,35]. Both
surgery and anesthesia have been suggested to play a
role in the progress of AD neuropathogenesis
[reviewed in [36,37]] and AD. Specifically, the age of
onset of AD has been reported to be inversely related
to cumulative exposure to anesthesia and surgery
before the age of 50 years [38], even though anesthesia
and/or surgery themselves may not increase the inci-
dence of AD [39]. Another study showed that patients
having coronary artery bypass graft surgery under gen-
eral anesthesia may be at increased risk for AD as
compared to those having percutaneous transluminal
coronary angioplasty under local anesthesia [40]. A
recent retrospective population-based study has found
that general anesthesia is a risk factor of AD with an
adjusted odds ratio of 3.22 [41]. Moreover, cognitive
dysfunction or decline occurs after anesthesia and sur-
gery [[42-52], reviewed in 53], which is associated with
impairments in daily functioning [54], dependency on
government economic assistance [52], and increased
morbidity and mortality [[42,55], reviewed in [56]].
However, opposing findings also exist [57-59]. There-
fore, more clinical studies, which will define the role of
anesthesia and/or surgery in AD and in postoperative
cognitive dysfunction or decline, are necessary [60].
Given the fact that adequately powered prospective

human studies will take many years to conduct and ana-
lyze, it is equally important to perform animal and in
vitro studies, which will complement ongoing human
studies, e.g., by establishing a mechanistic hypothesis.
Several studies have shown that the commonly used
inhalation anesthetic isoflurane may induce caspase acti-
vation, apoptosis, Ab oligomerization and accumulation,
neuroinflammation, tau protein hyperphosphorylation,
mitochondrial dysfunction, and impairment of learning
and memory [[60-69], reviewed in [36,37]]. However,
the underlying mechanisms of these effects remain lar-
gely to be determined. Our studies in cultured cells
have shown that exogenerously administrated Ab into
the cell culture media can potentiate the isoflurane-
induced caspase activation and apoptosis, which may
induce further rounds of apoptosis and Ab generation
[70]. In the present studies, we set out to determine the
effects of RNA interference (RNAi)-mediated silencing
of BACE and APP on Ab levels and the isoflurane-
induced caspase activaion in cultured cells to further

elucidate the potential association of Ab accumulation
and the isoflurane-induced caspase-3 activation.

Methods
Cell lines
We employed H4 human neuroglioma cells stably trans-
fected to express full-length human APP (H4-APP cells)
in the experiments. We used H4-APP cells for the easy
measurement of Ab levels in the conditioned cell cul-
ture media as we did in the previous studies [65,70,71].
The cells were cultured in Dulbecco’s modified Eagle’s
medium (high glucose) containing 9% heat-inactivated
fetal calf serum, 100 units/ml penicillin, 100 g/ml strep-
tomycin, and 2 mM L-glutamine and was supplemented
with 20 g/ml G418.

RNAi studies
RNAi-mediated silencing of BACE and APP experiments
were similar to those in our previous studies [72-76]. In
order to avoid off-target effects of RNAi, we employed two
sets of small interference RNAs (siRNAs) aimed at silen-
cing of BACE (1st set: 3’GCAAGGAGUACAACUAU-
GAUU; 2nd set: 3’GGAGGGAGCAUGAUCAUUGUU)
and APP (1st set: 3’ GGUGGGCGGUGUUGUCAUA; 2nd

set: 3’ GGUUCUGGGUUGACAAAUA). These siRNAs
and control siRNA (3’UAGCGACUAAACACAUCAAUU)
were obtained from Dharmacon (Lafayette, CO). siRNAs
were transfected into cells using electroporation
(AMAXA, Gaithersburg, MD) as described by Xie et al
[75]. Briefly, we mixed 1 million cells, 100 ul AMAXA
electroporation transfection solution and 10 ul 20 uM
siRNA together, then we employed C-9 program in an
AMAXA electroporation device for cell transfection. The
transfected cells were then placed in one of the six-well
plates containing 1.5 ml cell culture media. The BACE,
APP, or control siRNA-pretreated cells were then exposed
to the isoflurane treatment 48 hours later.

Isoflurane treatment
The isoflurane treatment was similar to those in our
previous studies [65,70,71]. We chose 2% isoflurane (air
component: 2% isoflurane, 5% CO2, 21% O2 and
balanced nitrogen) in the studies based on our previous
studies [65,70,71]. The control condition included 5%
CO2 plus 21% O2 (air component: 5% CO2, 21% O2 and
balanced nitrogen), which did not affect caspase-3 acti-
vation or Ab levels (Data not shown). The delivery of
gases was similar to that described in our previous stu-
dies [65,70]. Briefly, 21% O2, 5% CO2, and 2% isoflurane
were delivered from an anesthesia machine to a sealed
plastic box (airtight chamber) in a 37 degree C incuba-
tor containing six-well plates seeded with one million
cells in a 1.5 ml cell culture media. The Datex infrared
gas analyzer (Puritan-Bennett, Tewksbury, MA) was
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used to continuously monitor the concentrations of
CO2, O2, and isoflurane that were delivered.

Lysis of cells and protein amount quantification
The pellets of the cells were detergent-extracted on ice
using an immunoprecipitation buffer (10 mM Tris-HCl,
pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Nonidet P-
40) plus protease inhibitors (1 g/ml aprotinin, 1 g/ml
leupeptin, 1 g/ml pepstatin A). The lysates were col-
lected and centrifuged at 12,000 × g for 10 minutes, and
then were quantified for total protein levels using the
bicinchoninic acid protein assay kit (Pierce, Iselin, NJ).

Western blot analysis
The cells were harvested at the end of the experiments
and were subjected to Western blot analyses using the
methods described by Xie et al. [70]. BACE antibody
(1:1,000 dilution; Abcam, Cambridge, MA) was used to
recognize BACE (65 kDa). Antibody A8717 (1:1,000
dilution; Sigma, St. Louis, MO) was used to recognize
FL-APP (110 kDa) and APP-CTFs (10 to 12 kDa). A
caspase-3 antibody (1:1,000 dilution; Cell Signaling
Technology, Inc. Beverly, MA) was used to recognize
the caspase-3 fragment (17-20 kDa), which results from
cleavage at the asparate position 175, and FL-caspase-3
(35 - 40 kDa). An antibody to the non-targeted protein
b-Actin (42 kDa, 1:5,000, Sigma) was used to control for
loading differences in total protein amounts. Each band
in the Western blot represents an independent experi-
ment. We have averaged the results from three to six
independent experiments. The intensity of signals in
each Western blot was analyzed using the National
Institute of Health image program (National Institute of
Health Image 1.62, Bethesda, MD). We quantified the
Western blots using two steps. First, we used levels of
b-Actin to normalize (e.g., determine the ratio of the
amount of FL-caspase-3 to the amount of b-Actin) the
levels of FL-caspase-3, caspase-3 fragment, BACE, FL-
APP, and APP-CTFs to control for any loading differ-
ences in total protein amounts. Second, we presented
changes in the levels of BACE, FL-APP, APP-CTFs, and
caspase-3 in the treated cells as percentages of those in
cells from the control condition.

Quantification of Ab using Sandwich ELISA assay
Secreted Ab in the conditioned culture media was mea-
sured with a Sandwich ELISA assay by using an Ab
measurement kit (Invitrogen, Carlsbad, CA) as described
by Xie et al. [75]. Specifically, 96-well plates were coated
with mouse monoclonal antibodies (mAb) specific to
Ab40 (2G3) or Ab42 (21F12). Following blocking with
Block Ace, wells were incubated overnight at 4°C with
test samples of conditioned cell culture media, and then
an anti-Ab (b-A-HR1) antibody conjugated to

horseradish peroxidase was added. Plates were then
developed with TMB reagent and well absorbance was
measured at 450 nm. Ab levels in test samples were
determined by comparison with the signal from uncon-
ditioned media spiked with known quantities of Ab40
and Ab42.

Statistics
Given the presence of background caspase-3 activation,
Ab, BACE, FL-APP, and APP-CTFs in the cells cultured
in serum free media, we did not use absolute values to
describe their changes. Instead, these changes were pre-
sented as percentages of those from the control group.
For example, one hundred percent of caspase-3 activa-
tion refers to the control level for the purpose of com-
parison to experimental conditions. Data were expressed
as mean ± S.D.. The number of samples varied from
three to six, and the samples were normally distributed.
We used a two-tailed t-test to compare the difference
between the control siRNA and BACE or APP siRNA,
and the control condition and isoflurane treatment. P-
values less than 0.05 (*) and 0.01 (** or ##) were consid-
ered statistically significant.

Results and discussion
RNAi-mediated silencing of BACE attenuates the
isoflurane-induced caspase-3 activation
We previously reported that the commonly used inhala-
tion anesthetic isoflurane can induce caspase activation
and apoptosis in vitro [65,70,71] and in vivo [64]. How-
ever, the underlying mechanisms of these effects remain
largely to be determined. Specifically, Ab has been
shown to potentiate the isoflurane-induced caspase-3
activation in H4 naïve cells, but it is largely unknown
whether reduction in the levels of Ab can decrease the
isoflurane-induced caspase-3 activation in the cultured
cells. BACE is the enzyme for Ab generation and APP is
the precursor of Ab. Decreases in the levels of BACE
and APP could lead to reduction in Ab levels [3]. We
therefore set out to assess the effects of RNAi-mediated
silencing of BACE and APP on the levels of Ab and the
isoflurane-induced caspase-3 activation in H4-APP cells.
The H4-APP cells were treated with control or BACE

siRNA for 48 hours before the treatment with 2% iso-
flurane for six hours. The cells were harvested at the
end of the experiment and were subjected to Western
blot analysis. BACE immunoblotting showed that the
BACE siRNA treatment decreased BACE levels as com-
pared to the control siRNA treatment (Figure 1A). The
quantification of the Western blots illustrated that
BACE siRNA treatment significantly decreased BACE
levels as compared to control siRNA: 100% versus 57%
(Figure 1B). These findings suggest that the treatment
with BACE siRNA, which targets at reducing mRNA
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levels of BACE, was able to reduce the protein levels of
BACE in the current experiment. Next, we were able to
show that the BACE siRNA treatment decreased the
levels of both Ab40 (100% versus 55%) and Ab42 (100%
versus 63%) (Figure 1C). These results suggested that
the BACE siRNA was able to reduce Ab generation by
decreasing the levels of BACE, the enzyme of Ab
generation.
As expected, the caspase-3 immunoblotting showed

that the treatment with 2% isoflurane (lanes 5, 6 and
8) for six hours induced caspase-3 activation, as evi-
denced by increased ratios of cleaved (activated) cas-
pase-3 fragment (17 kDa) to full-length (FL) caspase-3
(35 - 40 kDa), compared with control condition (lanes
1 and 2). Finally, we were able to show that the BACE
siRNA treatment (lane 7) attenuated the isoflurane-
induced caspase-3 activation (lanes 5, 6 and 8) (Figure
1A). The quantification of the Western blots showed

that the isoflurane treatment (black bar) induced cas-
pase-3 activation as compared to control condition
(white bar): 100% versus 148%. The BACE siRNA
treatment alone (gray bar) did not induce caspase acti-
vation. However, the BACE siRNA treatment attenu-
ated the isoflurane-induced caspase-3 activation (net
bar) (Figure 1D): 148% versus 103%. These results
illustrate that reduction in BACE levels, via RNAi-
mediated silencing of BACE, may lead to the reduction
of Ab levels and the attenuation of the isoflurane-
induced caspase-3 activation.

RNAi-mediated silencing of APP attenuates the isoflurane-
induced caspase-3 activation
Given the findings that reduction in the levels of both
BACE and Ab is associated with the attenuation of the
isoflurane-induced caspase-3 activation, next, we would
like to know whether other methods to reduce Ab levels

Figure 1 Effects of RNAi-mediated silencing of BACE on Ab levels and caspase-3 activation in H4-APP cells. A. Treatment of BACE siRNA
(lanes 3, 4 and 7) decreases the levels of BACE as compared to control siRNA (lanes 1, 2, 5, 6 and 8) in the Western blotting analysis. Isoflurane
treatment (lanes 5 and 6) induces caspase-3 activation as compared to control condition (lanes 1 and 2). The BACE siRNA treatment alone (lanes
3 and 4) does not induce caspase-3 activation. However, the BACE siRNA treatment (lane 7) attenuates the isoflurane-induced caspase-3
activation (lanes 5, 6 and 8) as compared to control siRNA treatment (lanes 5, 6 and 8). B. Quantification of the Western blots shows that BACE
siRNA treatment (black bar) decreases the levels of BACE (** P = 0.0008) as compared to control siRNA treatment (white bar). C. BACE siRNA
treatment (black bar) reduces the levels of Ab40 (left panel, ** P = 0.0003) and Ab42 (right panel, * P = 0.02) as compared to control siRNA
treatment (white bar). D. Quantification of the Western blots shows that isoflurane (black bar, * P = 0.011) induces caspase-3 activation as
compared to control condition (white bar). BACE siRNA treatment (net bar, ## P = 0.002) attenuates the isoflurane-induced caspase-3 activation
as compared to control siRNA plus isoflurane treatment (black bar).
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can also lead to the attenuation of the isoflurane-
induced caspase-3 activation. Therefore, we set out to
determine the effects of RNAi-mediated silencing of
APP, the precursor of Ab, on the levels of APP and Ab,
and on the isoflurane-induced caspase-3 activation.
The H4-APP cells were treated with control or APP

siRNA for 48 hours before the treatment with 2% iso-
flurane for six hours. The cells were harvested at the
end of the experiment and were subjected to Western
blot analysis. The APP immunoblotting showed that the
APP siRNA treatment (lanes 3 and 4) decreased the
levels of FL-APP and APP-CTFs as compared to the
control siRNA treatment (lanes 1 and 2) (Figure 2A).
The quantification of the Western blots showed that the
APP siRNA treatment (black bar) decreased the levels of
FL-APP (left panel, 100% versus 26%) and APP-CTFs
(right panel, 100% versus 23%) as compared to control
siRNA treatment (white bar). These results suggest that
the RNAi-mediated silencing of APP was able to reduce
the levels of APP in the H4-APP cells in the current
experiment.
Next, we were able to show that the APP siRNA treat-

ment reduced the levels of both Ab40 (left panel, 100%
versus 58%) and Ab42 (right panel, 100% versus 66%).
Finally, the caspase-3 immunoblotting showed that the
APP siRNA treatment (lanes 3 and 4) decreased the iso-
flurane-induced caspase-3 activation as compared to the
control siRNA treatment (lanes 1 and 2) (Figure 2D).
The quantification of the Western blots showed that the
APP siRNA treatment (black bar) decreased the isoflur-
ane-induced caspase-3 activation as compared to control
siRNA treatment (white bar): 100% versus 64%. These
results illustrated that the reduction in the levels of Ab
and APP, resulting from RNAi-mediated silencing of
APP, may also lead to the attenuation of isoflurane-
induced caspase-3 activation.
Taken together, these findings suggest that there is an

association between the Ab levels and the isoflurane-
induced caspase-3 activation, specifically, the reduction
of Ab levels, resulted from RNAi-mediated silencing of
either BACE or APP, can lead to the attenuation of the
isoflurane-induced caspase-3 activation.
Our previous studies have shown that the commonly

used inhalation anesthetic isoflurane can induce cas-
pase-3 activation and apoptosis [64,65,70,71]. However,
the underlying mechanism remains unclear and is an
important question in the field of anesthesia neurotoxi-
city research. The previous studies in H4 naïve and H4-
APP cells have shown that the isoflurane-induced cas-
pase-3 activation and apoptosis can enhance levels of
BACE and g-secretase, which promote APP processing
and increase Ab generation [70]. Moreover, Ab can
potentiate the isoflurane-induced caspase-3 activation,
leading to further rounds of apoptosis [70]. However, it

is largely unknown whether reduction in Ab levels can
attenuate the isoflurane-induced caspase-3 activation.
Therefore, we set out to assess the effects of RNAi-
mediated silencing of APP, the precursor of Ab, and
BACE, the enzyme of Ab generation, on Ab levels and
on the isoflurane-induced caspase-3 activation in H4-
APP cells.
First, we have found that RNAi-mediated silencing of

BACE can decrease BACE levels. These results suggest
that the BACE siRNA-induced reduction in BACE
mRNA levels can successfully decrease the protein levels
of BACE in the current experiment. Then, we have
found that there is a decrease in Ab levels following the
BACE siRNA treatment. Finally, the BACE siRNA treat-
ment attenuates the isoflurane-induced caspase-3 activa-
tion in the H4-APP cells. These results have suggested
that decreased Ab levels by the RNAi-mediated silencing
of BACE may lead to the attenuation of the isoflurane-
induced caspase-3 activation. These results further sup-
port our previous findings that isoflurane may induce a
vicious cycle of caspase-3 activation/apoptosis and Ab
accumulation [70].
The double bands for BACE in Figure 1A could be the

isoforms of BACE. It is also possible that isoflurane
induces a post-translational modification of BACE (e.g.,
phosphorylation). However, the RNAi of BACE
decreases both bands of BACE, thus these findings still
support the conclusion of current study that RNAi-
mediated silencing of BACE can lead to a reduction in
Ab levels and an attenuation of the isoflurane-induced
caspase-3 activation. As the key enzyme that initiates
the formation of Ab, BACE is a prerequisite for the gen-
eration of Ab, which gives rise to cerebrovascular and
parenchymal amyloid plaque in the brain of AD
patients. Thus, it is important to identify these double
bands following the isoflurane treatment in the future
studies.
Previous in vivo studies have shown that a 50% reduc-

tion in BACE1 levels causes only a 12% decrease in Ab
levels in heterozygous BACE1 gene knock-out mice
[77]. However, our current in vitro studies have illu-
strated that a 43% reduction in BACE levels, following
the BACE siRNA treatment, led to a 45% and a 37%
reduction in the levels of Ab40 and Ab42, respectively.
It is largely unknown why there is a difference between
the in vitro and in vivo findings in the Ab levels. The
possible explanations include the difference in the meth-
ods and experimental variability.
Decreased levels of BACE in heterozygous (BACE1

+/-) mice can lead to improvement of hippocampus-
independent and -dependent form of memory deficits
in the AD animal model [78,79]. Isoflurane has been
shown to induce learning and memory impairment
[62,80,81]. Our future studies, therefore, will include

Dong et al. Medical Gas Research 2011, 1:5
http://www.medicalgasresearch.com/content/1/1/5

Page 5 of 9



assessing the effects of isoflurane on learning and
memory in heterozygous (BACE1+/-) mice to further
determine the role of BACE and Ab in the anesthesia
associated neurotoxicity.

Next, we have further demonstrated the potential
association of Ab accumulation and isoflurane-induced
caspase-3 activation by showing that RNAi-mediated
silencing of APP can decrease the levels of FL-APP,

Figure 2 Effects of RNAi-mediated silencing of APP on Ab levels and caspase-3 activation in H4-APP cells. A. Treatment of APP siRNA
(lanes 3 and 4) decreases the levels of FL-APP and APP-CTFs as compared to control siRNA (lanes 1 and 2) in the Western blotting analysis.
B. Quantification of the Western blots shows that APP siRNA treatment (black bar) decreases the levels of FL-APP (left panel, ** P = 0.0001) and
APP-CTFs (right panel, ** P = 0.0001) as compared to control siRNA treatment (white bar). C. APP siRNA treatment (black bar) reduces the levels
of Ab40 (left panel, ** P = 0.0003) and Ab42 (right panel, * P = 0.011) as compared to control siRNA treatment (white bar). D. APP siRNA
treatment (lanes 3 and 4) attenuates the caspase-3 activation induced by isoflurane as compared to the control siRNA treatment (lanes 1 and
2) in the Western blotting analysis. E. Quantification of the Western blots shows that APP siRNA treatment (black bar, * P = 0.043) reduces the
isoflurane-induced caspase-3 activation as compared to control siRNA plus isoflurane treatment (white bar).
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APP-CTFs, Ab, and finally the isoflurane-induced cas-
pase-3 activation. These findings have suggested that the
reduction in Ab levels by decreasing the levels of its
precursor i.e., APP, can also lead to the attenuation in
the isoflurane-induced caspase-3 activation.
Isoflurane has been reported to induce caspase activa-

tion and apoptosis [64,65,70,76,82], [reviewed in
[36,37]]. However, different findings do exist [83-93].
The reason for the different effects of isoflurane is lar-
gely unknown. Some studies have suggested that isoflur-
ane may have a concentration and/or time-dependent
dual effect (protective versus toxic) [94-96]. However,
given the findings that increases and decreases in Ab
levels can either potentiate [70] or attenuate (current
findings) the isoflurane-induced caspase-3 activation,
respectively, it is possible that isoflurane may have dif-
ferent effects on caspase-3 activation and apoptosis
when different Ab levels are presented. Additional stu-
dies will be needed to further test this hypothesis by
determining the effects of different concentrations of
exogenously administrated Ab on the isoflurane-induced
caspase-3 activation and apoptosis in vitro and in vivo.

Conclusion
In conclusion, we have found that RNAi-mediated silen-
cing of either BACE or APP can lead to a reduction in
Ab levels as well as an attenuation in the isoflurane-
induced caspase-3 activation. These results have further
supported our previous findings that isoflurane induces
caspase activation and apoptosis, which lead to Ab
accumulation. Ab will then cause further rounds of cas-
pase activation and apoptosis [70]. We would like to
emphasize that although our current findings and the
results from other studies have suggested that isoflurane
may promote AD neuropathogenesis, it is still prema-
ture to conclude that isoflurane is toxic to use in
patients. The in vivo relevance of these effects of iso-
flurane in humans remains largely to be determined.
Nevertheless, our current findings should lead to addi-
tional studies to determine the potential effects of anes-
thetics on AD neuropathogenesis and the underlying
mechanisms. These efforts will ultimately help facilitat-
ing the design of safer anesthetics and improved
anesthesia care for patients, especially elderly individuals
and patients with AD.

List of Abbreviation
AD: Alzheimer’s disease; APP: amyloid β precursor protein; BACE: β-site
amyloid precursor protein-cleaving enzyme; Aβ: β-amyloid protein; CTFs: c-
terminal fragments.
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