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Argon prevents the development of locomotor
sensitization to amphetamine and amphetamine-
induced changes in mu opioid receptor in the
nucleus accumbens
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Abstract

Systemic administration of y-amino-butyric acid type A (GABA-A) and benzodiazepine receptor agonists has been
reported to block the development of locomotor sensitization to amphetamine. Here, we investigated whether the
non-anesthetic noble gas argon, shown to possess agonistic properties at these receptors, may block the acquisition
of amphetamine-induced locomotor sensitization and mu opioid receptor activation in the nucleus accumbens.
Rats were pretreated with saline solution or amphetamine (1 mg/kg) from day 1 to day 3 and then exposed,
immediately after injection of amphetamine, to medicinal air or argon at 75 vol% (with the remainder being
oxygen). After a 3-day period of withdrawal, rats were challenged with amphetamine on day 7. Rats pretreated with
amphetamine and argon had lower locomotor activity (U=5, P <0.005) and mu opioid receptor activity in the
nucleus accumbens (U=0, P<0.001) than rats pretreated with amphetamine and air. In contrast, argon had effect
on locomotor and mu receptor activity neither in rats pretreated with saline and challenged with amphetamine
(acute amphetamine) nor in rats pretreated and challenged with saline solution (controls). These results indicate
that argon inhibits the development of both locomotor sensitization and mu opioid receptor activation induced

by repeated administration of amphetamine.

Keywords: Amphetamine, Locomotor sensitization, GABA, Benzodiazepine, Argon, Noble gases

Introduction

Over the past 10 years, a series of in vitro and in vivo
studies has demonstrated the organoprotective and
therapeutic potential of the inert gases xenon, nitrous
oxide, and argon [1-13]. Particularly, in line with their
antagonistic action at the N-methyl-D-aspartate (NMDA)
glutamate receptor and nicotinic acetylcholine (nACh)
receptor [14-19], xenon and nitrous oxide at subanes-
thetic doses have been shown to block the development
of locomotor sensitization to amphetamine [20], which is
characterized by an enhanced locomotor response to an
amphetamine challenge in rats pretreated with repeated
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amphetamine. So far, in contrast with xenon and nitrous
oxide, the non-anesthetic gas argon is thought to act
mainly through activation of the y-amino-butyric acid
(GABA) type A and benzodiazepine receptors [21]. Al-
though GABA-A and benzodiazepine receptor agonists
have been shown to block the acquisition of locomotor
sensitization to amphetamine and amphetamine-derived
drugs [22,23], whether argon may also inhibit the devel-
opment of locomotor sensitization to amphetamine still
remains unknown.

Therefore, in the present study, we investigated the
effect of argon on the development of amphetamine-
induced locomotor sensitization and mu opioid re-
ceptor activation the nucleus accumbens, whose ele-
vated activity has been shown to be critically involved in
the development of neurobehavioral sensitization to am-
phetamine [24-27].
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Materials and methods

Animals

All animal-use procedures were in accordance with the
Declaration of Helsinki and within the framework of the
French legislation for the use of animals in biomedical
experimentation, and were approved by a research ethic
committee. Male adult Sprague—Dawley rats (Janvier, Le
Genest Saint-Isle, France) weighing 250 to 300 g were
used. Rats were housed socially at 21.5°C in groups of 3
to 4 in perspex home cages with free access to food and
water. Light was maintained on a reverse light—dark
cycle, with lights on from 8 PM to 8 AM.

Sensitization to amphetamine

Rats (n = 8 per group) were treated daily with either am-
phetamine (1 mg/mL/kg, intraperitoneally; IP) or saline
solution (1 mL/kg, IP) from day 1 to day 3. Immediately
after injection of amphetamine or saline solution, rats
were treated for 3 h with “medicinal” air (composed
of 75 vol% nitrogen + 25 vol% oxygen) or with argon
at 75 vol% (with the remainder being oxygen). Then,
after 3 days of withdrawal, behavioral and neurochem-
ical investigations were performed as detailed below
(Figure 1). Both gas mixtures were administered at a
flow rate of 5 L/min in a closed chamber of 100 L volume
(65 x 45 x 35 cm), a condition that allows maintaining
carbon dioxide less than 0.03 vol% and humidity about
65-70% inside the chamber with the use of soda lime and
silica gel, respectively.

Behavioral investigations

On day 7, rats were habituated to the activity boxes
for 1 h before being challenged with saline solution
(1 mL/kg, IP) or amphetamine (1 mg/mL/kg, IP), and
then were recorded for locomotor activity for 1 h 30 min
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as detailed previously [21]. Locomotor activity was quan-
tified using a bank of 4 individual activity cages measur-
ing 30 x 20 x 20 cm, equipped with horizontal infrared
beams, located 3 cm above the floor across the long axis
of the cage (Imetronic, Pessac, France). Beam interrup-
tions were detected through an electrical interface and
recorded over 10-min intervals. All experiments were
performed during the animals’ dark cycle with the activ-
ity boxes kept dark.

Neurochemical assays

Immediately after amphetamine challenge on day 7,
rats were killed and their brain was carefully removed
from their skull, frozen with isopentane and then stored
at -20°C. For each animal, two coronal sections of
20 pm thickness including the nucleus accumbens
(anteriority: +1 mm from the bregma) were cryostat cut,
applied to glass slides with a very low non-specific bind-
ing capacity (Superfrost Plus, Menzel-Glaser GmbH,
Braunscheig, Germany) and stored at -20°C until re-
quired for the binding assays.

Saturation binding was performed on rat brain sec-
tions as detailed previously [28]. Brain sections were pre-
incubated twice for 5 min at 4°C in 50 mM Tris—HCl
buffer solution [(hydroxyl-methyl)aminomethane] con-
taining 100 mM NaCl, 1 g/L bovine serum albumin
(BSA), and 20 mg/L bacitracin, adjusted to pH 7.4, in
order to dissociate and eliminate potential endogenous
ligands. Then, brain sections were incubated for 45 min
at 4°C using 800 pL of buffer solution containing in-
creasing concentrations (0.312, 0.625, 1.25, 2.5, 5 nM)
of [PHIDAMGO [(D-ala®N-methyl-phe* glycol®)(tyrosyl-
3,5->H)enkephalin, 1 Ci/L, specific radioactivity 66 Ci/
mmol]. The amount of non-specific labelling was assessed
using adjacent brain sections in the presence of an excess
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Figure 1 Experimental protocol and procedures. Rats (n =8 per group) were treated daily with either saline solution (1 mL/kg intraperitoneally; IP)
or amphetamine (1 mg/ml/kg, IP) from day 1 to day 3. Immediately after injection of saline solution or amphetamine, rats were treated for 3 h with
“medicinal” air (composed of 75 vol% nitrogen + 25 vol% oxygen) or argon at 75 vol% (with the remainder being oxygen). Then, after 3 days of
withdrawal, behavioral investigations were performed on day 7. Immediately after behavioral testing, the rats’ brain were removed and used to assess
the constitutive activity of the mu opioid receptor in the nucleus accumbens.
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of naloxone at 10 pM. After incubation, brain sections
were quickly washed (30 s) with Tris—HCI buffer contain-
ing BSA (x1) and then with Tris—HCI buffer alone (x3) at
4°C in order to eliminate unbound ligand. A final wash
was performed at 4°C with distilled water to remove ex-
cess of buffer salts. Then, brain sections were dried over
night at room temperature and stored until counting. Be-
fore being used for image acquisition and data analysis,
slides containing brain sections were exposed under
tritium-sensitive phosphor screens in the dark for 10 days
at -20°C. Images were then captured with a computer-
controlled Cyclone phosphorimaging scanner using the
OptiQuant acquisition and analysis software (Packard In-
strument Company, Meriden, CT, USA). Optical densities
expressed as digital light units per mm? over [*H] standard
spot were measured. Specific binding was determined by
subtracting non-specific binding from total binding. Satur-
ation binding data were fitted according to a one site bind-
ing (hyperbola) model using Graph Pad prism (Graph Pad
Prism 4.02; Graph Pad Software, La Jolla, CA, USA). The
ratio of changes in percentage from basal values of the
maximal number of binding sites (Bmax in fmol/mm?) to
the dissociation constant (Kd in nM) was calculated by the
computer to assess the level of constitutive activity of the
mu opioid receptor in the nucleus accumbens in the pres-
ence of amphetamine and/or argon.

Drugs, chemical, and gases

Amphetamine (d-amphetamine hemisulfate salt, ref.
A5880), BSA (bovine serum albumin ref. 2153), and na-
loxone (Naloxone hydrochloride dihydrate, ref. N7758)
were purchased from Sigma-Aldrich (Illkirch, France).
Bacitracin was purchased from MP biomedicals (Santa
Ana, CA, USA), and [PHIDAMGO (66 Ci/mmol) from
Amersham Biosciences (Buckinghamshire, UK). Oxygen,
nitrogen and argon of medicinal grade were purchased
from Air Liquide (Paris, France). Gas mixtures com-
posed of 75 vol% nitrogen + 25 vol% oxygen or 75 vol%
argon + 25 vol% oxygen were obtained using calibrated
flowmeters and gas analysers.

Data presentation and statistical analysis

Data were expressed as the median and quartiles values,
and analyzed using non-parametric statistical methods.
Between-group comparisons were performed using the
Kruskall-Wallis analysis of variance; following a significant
H value, post hoc analysis was performed using the Mann—
Whitney U-test. Statistical significance was set at P < 0.05.

Results

Amphetamine-induced changes in locomotor activity and
Mu receptor activity

The effects of amphetamine on locomotor activity and
mu receptor activity are illustrated in Figure 2. All rats
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were pretreated with either saline solution or amphet-
amine and then exposed immediately to medicinal air
used as a control gas treatment. When challenged with
amphetamine, rats pretreated with repeated administra-
tion of saline solution or amphetamine had higher scores
of locomotor activity than control rats pretreated and chal-
lenged with saline solution (=1, P=0.001, Figure 2B).
Further comparison between rats challenged with amphet-
amine showed that rats pretreated with repeated adminis-
tration of amphetamine had higher scores of locomotor
activity than rats pretreated with saline (U =0, P<0.001,
Figure 2A), indicating that locomotor sensitization to am-
phetamine had occurred.

As assessed immediately after the amphetamine chal-
lenge, rats pretreated with repeated administration of
saline solution or amphetamine had increased mu recep-
tor activity as estimated by the ratio of Bmax to Kd com-
pared to control rats pretreated and challenged with saline
solution (U =4, P=0.005; U=0, P<0.001; Figure 2B).
However, in contrast with what seen for locomotor activity,
further comparison between rats challenged with amphet-
amine revealed no significant difference in mu receptor ac-
tivity between rats pretreated with repeated administration
of amphetamine and those pretreated with repeated ad-
ministration of saline solution and medicinal air (U =32,
n.s., Figure 2B).

Effects of argon on amphetamine-induced changes

The effects of argon on locomotor sensitization and
changes in mu receptor activity induced by repeated ad-
ministration of amphetamine are illustrated in Figure 2.
Exposure to argon, immediately after administration of
amphetamine, blocked the development of locomotor
sensitization to amphetamine. Indeed, when challenged
with amphetamine, rats pretreated with amphetamine
and argon had lower locomotor activity than control rats
pretreated with amphetamine and air (U =5, P<0.005;
Figure 3A). In contrast with its inhibitory effect on the
development of locomotor sensitization to amphetamine,
argon had significant effect neither on the locomotor-
activating action of acute amphetamine nor on basal
locomotor activity (Figure 3A). Indeed, when challenged
with amphetamine, rats pretreated with saline solution
and argon had locomotor activity that was not different
from that displayed by rats pretreated with saline solu-
tion and air (U = 20, n.s.). Likewise, when challenged with
saline solution, rats pretreated with saline solution and
argon had locomotor activity that was not different from
that displayed by rats pretreated with saline solution and
air (U =17.5, n.s.).

Exposure to argon immediately after amphetamine ad-
ministration blocked the increase in mu receptor activity
induced by repeated administration of amphetamine,
so that, as assessed immediately after the amphetamine
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Figure 2 Effects of amphetamine on locomotor activity and mu receptor activity in the nucleus accumbens. (A) When challenged with
amphetamine, rats pretreated with repeated administration of saline solution (SA) or amphetamine (AA) had higher locomotor responses than
rats pretreated and challenged with saline solution (SS). Locomotor activity is expressed in arbitrary units. (B) As assessed immediately after being
challenged with amphetamine, rats pretreated with repeated injection of saline solution (SA) or amphetamine (AA) had higher mu receptor
activity in the nucleus accumbens than rats pretreated and challenged with saline solution (SS). The ratio of the dissociation constant (Kd) to the
maximal number of binding sites (Bmax) was calculated to assess the activity of mu receptors in the nucleus accumbens; mu receptor activity in
controls rats pretreated and challenged with amphetamine was taken as a 100 % value. SS: pretreatment with saline + challenge with saline; SA:
pretreatment with saline + challenge with amphetamine; AA: pretreatment with amphetamine + challenge with amphetamine. * P <0.001 vs SS + Air;
# P <0001 vs SA +Alr.
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Figure 3 Effects of argon on amphetamine-induced changes in locomotor activity and mu receptor activity in the nucleus accumbens.
(A) When challenged with amphetamine, rats pretreated with amphetamine and argon had lower locomotor activity than rats pretreated with
amphetamine and air (AA); in contrast, no significant difference in locomotor activity was found between rats pretreated with saline and argon
and those pretreated with saline and air when challenged with amphetamine (SA) or saline (SS). This indicates that argon blocked locomotor
sensitization to amphetamine, but had effect neither on locomotor activity induced by acute amphetamine nor on basal locomotor activity.
Locomotor activity is expressed in arbitrary units. (B) As assessed immediately after being challenged with amphetamine, rats pretreated with
amphetamine and argon had reduced mu receptor activity compared to rats pretreated with amphetamine and air (AA); in contrast, no
significant difference in mu receptor activity was found between rats pretreated with saline and argon and those pretreated with saline and air
when challenged with amphetamine (SA) or saline (SS). This indicates that argon blocked the increase in mu receptor activity induced by
repeated amphetamine, but had effect neither on the increase in mu receptor activity induced by acute amphetamine nor on basal mu receptor
activity. The ratio of the dissociation constant (Kd) to the maximal number of binding sites (Bmax) was calculated to assess the activity of mu
receptors in the nucleus accumbens; mu receptor activity in controls rats pretreated and challenged with amphetamine was taken as a 100 %
value. SS: pretreatment with saline + challenge with saline; SA: pretreatment with saline + challenge with saline; AA: pretreatment with amphetamine +
challenge with amphetamine. * P <0001 vs AA + Air.
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challenge, rats pretreated with amphetamine and argon
had reduced mu receptor activity compared to rats pre-
treated with amphetamine and air (=0, P=0.001,
Figure 3B). In contrast, argon had no significant effect on
mu receptor activity in rats pretreated with saline and air
and challenged with amphetamine (acute amphetamine;
U =32, n.s., Figure 3B), or in control rats pretreated and
challenged with saline (U = 19, n.s., Figure 3B).

Discussion
In the present study, we showed that argon inhibited the
development of locomotor sensitization to amphet-
amine, but had effect neither on the locomotor activat-
ing properties of acute amphetamine nor on basal
locomotor activity. In addition, we found that argon fur-
ther blocked the increase in mu receptor activity in-
duced by repeated administration of amphetamine, but
had effect neither on the increase in mu receptor activity
induced by acute amphetamine nor on basal mu recep-
tor activity in the nucleus accumbens. Taken together,
these results show that argon “specifically” inhibits both
locomotor sensitization and the increase in mu receptor
activity induced by repeated amphetamine administration.

The mu opioid neurotransmission is an integral part
of the motive circuit and as such it is well recognized to
be fully involved in the mechanisms of action and the
behavioral effects of drugs that belong to the amphet-
amine family [27]. Thus, rats subjected to repeated ad-
ministration of amphetamine have been demonstrated to
exhibit enhanced responsiveness and elevated constitu-
tive activity of mu opioid receptors in the nucleus accum-
bens [29], and knock-out mice lacking the mu receptor
have been shown to be insensitive to behavioral sensitization
induced by amphetamine-derived drugs [26]. Interestingly,
other investigations have shown that the GABA-A and mu
receptors are closely linked. In that way, previous studies
have demonstrated that blocking the mu receptor by spe-
cific antagonists allows inhibiting behavioral responses elic-
ited by focal injection of GABA-A receptor agonists in the
nucleus accumbens [30]. Also, mu-opioid receptor knock-
out mice have been reported to show increased binding for
[PHIGABA-A agonists in the cortex and hippocampus
compared to wild-type mice [31]. Therefore, whether argon
inhibits the enhanced constitutive activity of mu receptors
induced by repeated administration of amphetamine dir-
ectly through competitive or non-competitive antagonism
of the mu opioid receptor or indirectly through its agonis-
tic action at the GABA-A receptor [21], still remains to be
elucidated, particularly if one considers that the adminis-
tration of prototypical GABA-A and benzodiazepine re-
ceptor agonists has been reported to block the acquisition
of locomotor sensitization to amphetamine [22,23].

Inert gases are well-known to act at multiple targets.
For instance, xenon and nitrous oxide have antagonistic
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properties at the NMDA glutamate and nACh acetylcho-
line receptors and, on the contrary, possess agonistic ac-
tion at the two-pore domain TREK-1 potassium channel
[15,16,32]. The present study suggests that argon could
act as a mu receptor antagonist in addition of its agonis-
tic properties at the GABA-A receptor [21]. These latter
effects could both participate to the inhibiting action of
argon at blocking locomotor sensitization to amphet-
amine [22,23,26,33]. Further in vitro experiments should
be performed to investigate the way by which argon
modulates the mu opioid receptor, directly or indirectly
through activation of the GABA-A receptor. Whatever,
our results clearly demonstrate that argon down regu-
lates the activity of the mu opioid receptor and that it
may have beneficial effect on the expression of behavioral
sensitization to amphetamine, a condition necessary for
actually evaluating the potential of argon as a possible
therapeutic agent in the treatment of drug addiction.

If argon would act as a direct inhibitor of the mu opi-
oid receptor, its therapeutic potential could be of interest
in other, mainly psychiatric, diseases such as depression,
stress-induced disorders, attentional and hyperactivity
disorders, and impulse control disorders.
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