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Propofol and magnesium attenuate
isoflurane-induced caspase-3 activation via
inhibiting mitochondrial permeability transition
pore
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Abstract

Background: The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability
transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory
impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening,
lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to
determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP
opening.

Methods: We investigated the effects of magnesium sulfate (Mg2+), propofol, and isoflurane on the opening of
mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human
amyloid precursor protein (APP) (H4 APP cells) and in six day-old wild-type mice, employing Western blot analysis
and flowcytometry.

Results: Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP
cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the
isoflurane-induced mPTP opening in the H4-APP cells.

Conclusion: These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by
inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and
propofol in preventing and treating anesthesia neurotoxicity.
Introduction
Alzheimer’s disease (AD) is one of the most common
dementia with an incidence of 13% in people over
65 years of age [1]. There are approximately 8.5 million
AD patients who will need anesthesia and surgery care
every year. Anesthesia and surgery have been reported
to induce cognitive dysfunction, which AD patients are
susceptible to develop. Therefore, it is important to
identify any anesthetic that may promote AD neuro-
pathogenesis and to develop strategies in preventing and
treating anesthesia neurotoxicity.
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Caspase activation and apoptosis have been reported to
contribute to AD neuropathogenesis. ([2-11], reviewed in
[12,13]) And current studies suggest that caspase activation
(without apoptosis) can induce microglia activation, con-
tributing to AD neuropathogenesis [14]. The commonly
used inhalation anesthetic isoflurane has been shown
to induce caspase activation and apoptosis, and to in-
crease β-amyloid protein (Aβ) oligomerization and accu-
mulation in vitro and in vivo [15-23]. Our recent studies
have shown that isoflurane can induce mitochondrial
dysfunction, e.g., mPTP opening, leading to caspase acti-
vation in vitro and in vivo and impairment of learning and
memory function in mice [24]. Moreover, cyclosporine A,
an inhibitor of mPTP opening [25-33], has been shown to
attenuate the isoflurane-induced mPTP opening, caspase-3
activation, and impairment of learning and memory [24].
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Propofol, the most commonly used intravenous anes-
thetic, and magnesium sulfate (Mg2+) are also blockers
of mPTP [34]. In the present studies, we have assessed
the effects of propofol and Mg2+ on isoflurane-induced
opening of mPTP and caspase-3 activation.
Both propofol and isoflurane have been shown to be

both cytoprotective and cytotoxic, depending on dose-
and time-differences in various cell cultures and in the
developing brains in different animal models [35-38].
Volatile anesthetics or propofol may also provide cardiac
or brain protection via opening mitochondrial potassium
channels or generation of reactive oxygen species (ROS)
in mitochondria [34,39,40].

Methods
Cells
We employed H4 human neuroglioma cells, stably trans-
fected to express full-length (FL) amyloid precursor pro-
tein (APP) (H4-APP cells) in the experiments. The cells
were cultured in Dulbecco's Modified Eagle Media
(DMEM) containing 9% heat-inactivated fetal calf
serum, 100 units/ml penicillin, 100 μg/ml strepto-
mycin, and 2 mM L-glutamine, and were supplemented
with 220 μg/ml G418.

Treatments for H4-APP cells
Cells were treated with 2% isoflurane plus 21% O2 and 5%
CO2 for six hours as described by our previous studies [41]
for the purpose of measuring caspase-3 activation. The cul-
tured cells were treated for three hours in the studies to
measure mPTP opening as described by our precious
studies [24]. Treatment with 2% isoflurane for three hours
may not induce caspase-3 activation and apoptosis
(Figure 1). Thus, we assessed whether the treatment with
2% isoflurane for three hours might induce opening of
mPTP without causing caspase-3 activation in the cells. In
the interaction experiments, 50 μM magnesium sulfate
(Mg2+) or 200 μM propofol was administrated to the cells
one hour before the isoflurane treatment as well as during
isoflurane treatment.

Mice anesthesia and harvest of brain tissues
C57BL/6 J mice (The Jackson Laboratory, Bar Harbor,
ME) were used in the experiments as described before
[17,42]. The animal protocol was approved by Standing
Committee on Animals at Massachusetts General Hospital
(Boston, MA). The mice were randomized by weight and
gender into experimental groups that received 1.4% isoflur-
ane plus 100% oxygen for six hours, and control groups
that received 100% oxygen for six hours at identical flow
rates in identical anesthetizing chambers. Anesthetic and
oxygen concentrations were measured continuously (Datex,
Tewksbury, MA), and the temperature of the anesthetizing
chamber was controlled to maintain the rectal temperature
of the mice at 37 ± 0.5°C. In the interaction studies,
Mg2+ (100 mg/kg) or propofol (50 mg/kg) was adminis-
tered to the mice via intraperitoneal injection 10 minutes
before the isoflurane anesthesia. 200 μM propofol has been
shown to have neuroprotective effects in an in vitro model
of traumatic brain injury[43]; we therefore used this con-
centration of propofol to determine whether propofol can
attenuate the isoflurane-induced mPTP opening. 50 and
100, but not 25, mg/kg propofol have been shown to pro-
duce neuroprotection effects in ischemic mice models [44].
Thus, we used 50 mg/kg propofol in the current studies.
And we used 100 mg/kg Mg2+ on mice because Mg2+ has
been shown to have a neuroprotective effect on cerebral is-
chemia [45]. And based on our preliminary results, we used
50 μM Mg2+ in the in vitro the studies. Whole brain tissues
of mice were harvested at end of the anesthesia.

Brain tissue lysis and protein amount quantification
The harvested brain tissues were homogenized on ice using
an immunoprecipitation buffer (10 mM Tris–HCl, pH 7.4,
150 mM NaCl, 2 mM EDTA, 0.5% Nonidet P-40) plus pro-
tease inhibitors (1 μg/ml aprotinin, 1 μg/ml leupeptin,
1 μg/ml pepstatin A). The lysates were collected, centri-
fuged at 13,000 rpm for 15 min, and quantified for total
proteins by a bicinchoninic acid protein assay kit (Pierce,
Iselin, NJ).

Western blots analysis
The harvested H4-APP cells and brain tissues were sub-
jected to Western blot analyses as described by Xie et al.
[17,18,20] and Zhang et al. [46,47]. A caspase-3 antibody
(1:1,000 dilution; Cell Signaling Technology, Inc., Danvers,
MA) was used to recognize FL-caspase-3 (35 – 40 kDa)
and caspase-3 fragment (17 – 20 kDa) resulting from
cleavage at asparate position 175. Antibody anti-β-Actin
(1:10,000, Sigma, St. Louis, MO) was used to detect
β-Actin (42 kDa). Each band in the Western blot repre-
sented an independent experiment. The results were aver-
aged from three to 8 independent experiments. Briefly,
the intensity of the signals was analyzed using the
National Institute of Health image program (National
Institute of Health Image 1.62, Bethesda, MD). The
caspase-3 normalization was performed by determining the
ratio of caspase-3 fragment to FL caspase-3. Then, the
changes in levels of caspase-3 in treated cells or mice were
presented as percentages of the corresponding levels in
control cells or mice.

Flow cytometric analysis of mPTP opening
H4-APP cells were treated with 2% isoflurane for three
hours. For the interaction studies, 50 μM Mg2+ or 200
μM propofol was administrated to cells one hour before
the isoflurane treatment. The opening of mPTP was
determined by flowcytometry, using the MitoProbeTM



Figure 1 Isoflurane does not induce caspase-3 activation in H4-APP cells for 3 hours. A. Western blot shows that treatment of 2%
isoflurane for three hours (lanes 4 to 6) does not induce caspase-3 activation as compared to the control condition (lanes 1 to 3) in H4-APP cells.
B. Quantification of the Western blot shows that isoflurane (black bar) does not induce caspase-3 activation as compared to the control condition
(white bar): 0.98 versus 1.00 fold (P = 0.13) in H4-APP cells.
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Transition Pore Assay Kit (Invitrogen, Carlsbad, CA). In
normal conditions, the non-fluorescent acetoxymethyl
ester (AM) of calcein dye (calcein AM) and cobalt can
enter the cell. The acetoxymethyl ester (AM) groups are
cleaved from calcein via non-specific esterase, and cal-
cein can then show fluorescence signals in both the
cytosol and mitochondria. Cobalt can quench the cyto-
solic calcein signal. However, cobalt cannot enter healthy
mitochondria freely, and therefore cannot quench the mito-
chondrial calcein signal. When opening of mPTP occurs,
cobalt enters through the pore and subsequently quenches
the mitochondrial calcein signal. Flowcytometry was used
to detect the amount of cells that exhibit quenched calcein
signals inside the mitochondria. The location of the curves
indicates the amount of such cells, which suggests the
opening of mPTP. Ionomycin was used as a positive control
for the opening of mPTP in the experiments. Dead cells
and debris were excluded from analysis by gates set on for-
ward and side angle light scatter.

Statistics
Given the presence of background caspase 3 activation in
cells and brain tissues of mice, we did not use absolute
values to describe these changes. Instead, these changes
were presented as percentages of those from the control
group. For example, one hundred percent of caspase-
3 activation refers to the control level for the purpose
of comparison to experimental conditions. Data were
expressed as mean ± S.D.. The number of samples varied
from three to 8, and the samples were normally distributed.
We used a two-tailed t-test to compare the difference be-
tween the control condition and isoflurane treatment, and
the difference between propofol, Mg2+ and their controls.
P-values less than 0.05 (* or #) and 0.01 (** or ##) were con-
sidered statistically significant.

Results
Mg2+ inhibited the isoflurane-induced caspase-3
activation in H4-APP cells and in brain tissues of mice
The H4-APP cells were treated with 50 μM Mg2+ or saline
for 10 minutes followed by 2% isoflurane or control condi-
tion for six hours. The cells were harvested at the end of
the experiment and were subjected to Western blot ana-
lysis. Caspase-3 immunoblotting revealed that the iso-
flurane treatment induced caspase-3 activation (Figure 2A)
as evidenced by increased ratios of cleaved (activated) cas-
pase-3 fragment (17 kDa) to full-length (FL) (35–40 kDa)
caspase-3. Treatment with 50 μM Mg2+ alone did not
induce caspase-3 activation, but the Mg2+ treatment
attenuated the isoflurane-induced caspase-3 activation
(Figure 2A). Quantification of the Western blots
(Figure 2B), based on the ratio of caspase-3 fragment to
FL caspase-3, revealed that isoflurane (black bar) led to
caspase-3 activation as compared to the control condition
(white bar): 1.54 versus 1.00 fold (** P = 0.001). The Mg2+

treatment (net bar) attenuated the isoflurane-induced cas-
pase-3 activation: 1.23 fold versus 1.54 fold (# P= 0.03).
These findings suggest that Mg2+ may mitigate the
isoflurane-induced caspase-3 activation in H4-APP cells.
Next, we performed the in vivo relevance studies by

assessing the effects of isoflurane and Mg2+ on caspase-3
activation in the brain tissues of six-day old WT mice.
As can be seen in Figure 2C, Mg2+ (lane 4) attenuated
the isoflurane-induced caspase-3 activation (lane 3) in
the brain tissues of the mice. The Mg2+ treatment alone
(lane 2) did not induce caspase-3 activation as compared
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to the saline group (lane 1) in the brain tissues of the
mice. Quantification of the Western blot further illu-
strated that the isoflurane (black bar) led to caspase-3
activation as compared to the control condition
(white bar): 1.52 versus 1.00 fold (* P = 0.02). Mg2+

treatment (net bar) attenuated the isoflurane-induced
caspase-3 activation (black bar): 1.38 versus 1.52 fold
(# P = 0.03), (Figure 2D). These results from the
in vivo studies further suggest that Mg2+ may attenu-
ate the isoflurane-induced caspase-3 activation.
Figure 2 Mg2+ attenuates isoflurane-induced caspase-3 activation in H
treatment of 2% isoflurane for six hours (lanes 5 and 6) induces caspase-3 a
APP cells. Mg2+ treatment alone (lanes 3 and 4) does not induce caspase-3
Mg2+ treatment attenuates isoflurane-induced caspase-3 activation (lanes 7
cells. B. Quantification of the Western blot shows that isoflurane (black bar)
(white bar): 1.54 versus 1.00 fold (** P = 0.001) in H4-APP cells. Mg2+ treatm
compared to isoflurane treatment (black bar): 1.23 fold versus 1.54 fold (# P
isoflurane for six hours (lane 3) induces caspase-3 activation as compared t
treatment alone (lane 2) does not induce caspase-3 activation as compared
isoflurane-induced caspase-3 activation (lane 4) as compared to isoflurane
Western blot shows that isoflurane (black bar) induces caspase-3 activation
(* P = 0.02) in mouse brain tissues. Mg2+ treatment (net bar) attenuates isof
treatment (black bar): 1.38 versus 1.52 fold (# P = 0.03) in mouse brain tissu
Propofol inhibited isoflurane-induced caspase-3 activation
in brain tissues of mice
Our previous studies have illustrated that propofol can
attenuate the isoflurane-induced caspase-3 activation in
H4-APP cells. [48]. In the current experiments, we per-
formed the in vivo relevance studies by assessing the
effects of isoflurane and propofol on caspase-3 activation
in the brain tissues of WT six-day old mice. As can be
seen in Figure 3A, propofol (lane 10–11) attenuated the
isoflurane-induced caspase-3 activation (lane 7–9) in the
4-APP cells and brain tissues of mice. A. Western blot shows that
ctivation as compared to the control condition (lanes 1 and 2) in H4-
activation as compared to the control condition (lanes 1 and 2), but
and 8) as compared to isoflurane treatment (lanes 5 and 6) in H4-APP
induces caspase-3 activation as compared to the control condition
ent (net bar) attenuates isoflurane-induced caspase-3 activation as
= 0.03) in H4-APP cells. C. Western blots shows that treatment of 1.4%
o the control condition (lane 1) in mouse brain tissues. Mg2+

to the control condition (lane 1), but Mg2+ treatment attenuates
treatment (lane 3) in mouse brain tissues. D. Quantification of the
as compared to the control condition (white bar): 1.52 versus 1.00 fold
lurane-induced caspase-3 activation as compared to isoflurane
es.



Figure 3 Propofol attenuates isoflurane-induced caspase-3 activation in brain tissues of mice. A. Western blot shows that treatment of 1.4%
isoflurane for six hours (lane 7–9) induces caspase-3 activation as compared to the control condition (lane 1–3). Propofol treatment alone (lane 4–6) does
not induce caspase-3 activation as compared to the control condition (lane 1–3), but propofol treatment attenuates isoflurane-induced caspase-3
activation (lane 11–12) as compared to isoflurane treatment (lane 7–9). B. Quantification of the Western blot shows that isoflurane (black bar) induces
caspase-3 activation as compared to the control condition (white bar): 1.33 versus 1.00 fold (** P=0.01). Propofol treatment (net bar) attenuates
isoflurane-induced caspase-3 activation as compared to isoflurane treatment (black bar): 1.20 versus 1.33 fold (# P=0.02) in mouse brain tissues.
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brain tissues of the mice. The propofol treatment alone
(lane 4–6) did not induce caspase-3 activation compared
with the saline group (lane 1–3) in the brain tissues of
the mice. Quantification of the Western blot further illu-
strated that the isoflurane anesthesia (black bar) led to
caspase-3 activation as compared to the control condi-
tion (white bar): 1.33 versus 1.00 fold (** P = 0.01). Pro-
pofol treatment (net bar) attenuated the isoflurane-
induced caspase-3 activation in the mice (black bar):
1.20 versus 1.33 fold (# P = 0.02), (Figure 3B). These
results from the in vivo studies further suggest that pro-
pofol may attenuate the isoflurane-induced caspase-3
activation.
Figure 4 Mg2+ attenuates isoflurane-induced opening of mPTP
in H4-APP cells. A. Flow cytometric analysis shows changes in
calcein levels in mitochondria of H4-APP cells stained with
calceinAM or calceinAM plus cobalt, which indicate the opening of
mPTP. Peak 1: treatment of ionomycin (the positive control of
opening of mPTP); peak 2: treatment of isoflurane; peak 3: treatment
of isoflurane plus Mg2+ (50 μM). Mg2+ treatment attenuates
isoflurane-induced opening of mPTP, as demonstrated by the
position of peak of isoflurane treatment is shifted to the right
following Mg2+ treatment.
Mg2+ and propofol inhibit isoflurane-induced opening of
mPTP
Given that Mg2+ and propofol can attenuate the isoflurane-
induced caspase-3 activation, and the isoflurane-induced
caspase-3 activation may result from the isoflurane-induced
opening of mPTP, next, we asked whether Mg2+ and propo-
fol, the blockers of mPTP opening, can attenuate the
isoflurane-induced mPTP opening.
Flow cytometric analysis of calceinAM and cobalt

showed that the treatment with 50 μM Mg2+ (Figure 4,
peak 3) led to reductions in the isoflurane-induced
mPTP opening (Figure 4, peak 2), as evidenced by the
right-shift of the curve, whereas the Mg2+ treatment
alone did not affect the opening of mPTP in H4-APP
cells (data not shown). Next, we found that the treatment
with 50 μM propofol (Figure 5, peak 3) led to reductions in
the isoflurane-induced mPTP opening (Figure 5, peak 2),
whereas the propofol treatment alone did not affect the
opening of mPTP in H4-APP cells (data not shown). Taken
together, these findings suggested that Mg2+ and propofol
may mitigate the isoflurane-induced caspase-3 activation by
inhibiting the isoflurane-induced opening of mPTP.



Figure 5 Propofol attenuates isoflurane-induced opening of
mPTP in H4-APP cells. A. Flow cytometric analysis shows changes
in calcein levels in mitochondria of H4-APP cells stained with
calceinAM or calceinAM plus cobalt, which indicate the opening of
mPTP. Peak 1: treatment of ionomycin (the positive control of
opening of mPTP); peak 2: treatment of isoflurane; peak 3: treatment
of isoflurane plus propofol (200 μM). Propofol treatment attenuates
isoflurane-induced opening of mPTP, as demonstrated by the
position of peak of isoflurane treatment is shifted to the right
following propofol treatment.

Figure 6 Hypothetical pathway by which Propofol and
magnesium attenuate isoflurane-induced cytotoxicity. Propofol
and magnesium may mitigate the isoflurane-induced caspase-3
activation by inhibiting the isoflurane-induced mPTP opening.
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Discussion
Previous studies have shown that the common inhalation
anesthetic isoflurane may induce neurotoxicity in vitro [18]
and in vivo [17], which may lead to learning and memory
impairment in mice [24,49,50] and cognitive dysfunction in
humans [24]. In our search for the strategy to prevent and
treat isoflurane neurotoxicity, we were able to show that
mPTP inhibitor CsA could attenuate the isoflurane-
induced mitochondrial dysfunction (e.g., inhibition of
mPTP) and caspase-3 activation. However, CsA is not rou-
tinely used in patients due to its nephrotoxicity, hepatotox-
icity and cardiotoxicity side effect [51]. Therefore, it is
important to assess whether other mPTP inhibitors can
also attenuate the isoflurane-induced neurotoxicity.
We have found that both propofol and Mg2+, two

chemicals with no significant side effects, can attenuate
the isoflurane-induced caspase-3 activation in vitro and
in the brain tissues of mice (Figures 2 and 3). These
data suggest that propofol and Mg2+ may attenuate
the isoflurane-induced neurotoxicity.
For the mechanistic studies, we have shown that both

Mg2+ (Figure 4) and propofol (Figure 5) can inhibit the
isoflurane-induced mPTP opening. Our previous studies
have revealed that isoflurane may induce caspase activa-
tion, apoptosis, and learning and memory impairment
by inducing mitochondrial dysfunction (e.g., mPTP
opening) [24,46]. Collectively, These findings suggest
that propofol and magnesium may mitigate the
isoflurane-induced caspase-3 activation by inhibiting the
isoflurane-induced mPTP opening, pending on further
studies (Figure 6).
The studies have a few limitations. First, we did not assess

whether Mg2+ and propofol can ameliorate the isoflurane-
induced learning and memory impairment. However, the
findings from the current studies showed that Mg2+ and
propofol inhibit the isoflurane-induced mitochondrial dys-
function and neurotoxicity would establish a system for fu-
ture studies in animals and in humans. Second, we only
measured caspase-3 activation in current studies. This is
because our previous studies have already shown that iso-
flurane can induce caspase-3 activation, apoptosis, Aβ ac-
cumulation, and neuroinflammation [17,18,20,52]. In
addition, a recent study by Burguillos et al. [14] has shown
that caspase activation alone without apoptosis may still be
able to contribute to AD neuropathogenesis. Meanwhile,
Mg2+ is a well-known NMDA receptor antagonist [53]. Iso-
flurane has been shown to induce neurotoxicity by
increased activation of the NMDA receptor [41]. Therefore,
it cannot be excluded that Mg2+ may inhibit the isoflurane-
induced neurotoxicity by inhibiting its effects on the
NMDA receptor. Isoflurane may induce neurotoxicity via
ROS generation [46,54] and potassium channel activity
[55]. Propofol may also affect ROS generation and potas-
sium channel activity in mitochondria [56,57]. Thus, it is
also possible that propofol may mitigate the isoflurane-
induced caspase activation through ROS and potassium
channel activity.
In conclusion, we have found that Mg2+ and propofol

can attenuate commonly used inhalation anesthetic
isoflurane-induce caspase-3 activation in vitro and
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in vivo. Furthermore, we have found that Mg2+ and pro-
pofol, the blockers of mPTP opening, can attenuate
isoflurane-induced opening of mPTP.
Our current findings should lead to additional studies

to determine the potential effects of anesthetics on AD
neuropathogenesis, the underlying mechanisms, and the
strategy for prevention and treatment. Ultimately, these
combined efforts of anesthesia and neurology may de-
velop guidelines regarding how to provide safer
anesthesia care for AD patients (e.g., to avoid worsening
of AD neuropathogenesis and decline of cognitive func-
tion by anesthesia and surgery), like the one developed
by combined efforts of anesthesia and cardiology on
safer anesthesia care for coronary artery disease patients.
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