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Abstract

This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and
laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as
non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and
reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may
choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has
severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that
administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion
injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been
found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile
anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium
ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as
well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have
demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the
possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary
artery disease who are undergoing surgery.
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Introduction
Volatile anesthetics (VA) are gases that are used to in-
duce and maintain general anesthesia, with benefits of
relatively rapid onset and recovery with acceptable
effects on peripheral organs in most patients. In 1275
Spanish physician Raymond Lullus made a volatile liquid
that he called “sweet vitriol”—diethyl ether—which was
later used as an anesthetic. Years later, an American phys-
ician, Crawford W. Long, noticed that colleagues under
the influence of ether felt no pain when they injured
themselves. In 1842, Long conducted the first surgery with
the use of ether as an anesthetic, his patient, undergoing
removal of a tumor in his neck, did not report pain. Long
published his report in 1849, after William T. G. Morton
had performed the first public demonstration of successful
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ether anesthesia in the operating amphitheater of Massa-
chusetts General Hospital on October 16, 1846 [1].
VA have been shown to offer benefits in a wide range

of medical situations such as use in stroke victims by re-
ducing the amount of ischemic injury during the event
of stroke and delaying the development of brain injury
[2,3]; or as renal protection against ischemia-reperfusion
injury—reducing plasma creatinine and reducing renal
necrosis [4-9]. Some of these gases such as isoflurane,
desflurane, and sevoflurane have demonstrated cardio-
protection by reducing or preventing myocardial ischemia
both intraoperatively and postoperatively [10]. However,
VA administration is associated with myocardial depres-
sion and vasodilation that can contribute to intraoperative
hypotension, potentially upsetting the balance between
myocardial oxygen supply and demand with resulting
intraoperative myocardial ischemia [5]. Thus many clini-
cians choose to limit or avoid administration of VA to
patients undergoing coronary artery bypass surgery
(CABG). For example nearly 40% of Italian heart surgery
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centers reported administration of VA to less than 25% of
their CABG patients [11]. Similarly a meta-analysis found
nearly half of patients were given total intravenous
anesthesia in trials investigating VA effects during cardiac
surgery [12]. Further, VA administration was found to be
associated with worse outcome in the subset of cardiac
surgery patients who had worse preoperative cardiac is-
chemia or cardiovascular instability [13]. Further, rapid in-
duction of inhaled anesthesia can prolong the QT interval
[14], which may be of concern in patients otherwise
already at risk for ventricular fibrillation as may be seen
during acute myocardial ischemia.
This review will focus on isoflurane, desflurane, and

sevoflurane as agents used to achieve cardioprotection
emphasizing recent laboratory and clinical data on
the use of inhaled anesthetics for cardioprotection. It
also discusses the possible cardiac risks associated
with inhaled anesthesia.

Literature search strategy
The literature search for this review focused on the vola-
tile anesthetics isoflurane, desflurane, and sevoflurane.
The following search conditions were used for each vola-
tile anesthetic: volatile anesthetic AND cardiovascular
protection, OR cardiac ischemia, OR cardiac injury, OR
cardiac toxicity, OR cardiac ischemic preconditioning,
OR myocyte toxicity, OR myocyte ischemia, OR myocyte
hypoxia, OR cardiac hemorrhage, OR cardiac tolerance,
OR cardiac postconditioning, OR cardiac precondition-
ing, OR myocyte apoptosis, OR cardiac arrhythmias.
Articles that were not available in English were excluded
from the references. The available literature is discussed
as related to key areas of cardioprotection research and
clinical care.

Ischemic preconditioning
Ischemic injury is a pathological process that occurs
when blood supply is interrupted to a specific area of tis-
sue that occurs when oxygen (O2) demand exceeds O2

supply. In the event of ischemia, the myocardium con-
tinues to function by utilizing its stores of glycogen.
However, if oxygen deprivation occurs for more than
15 minutes the myocardial tissue will become necrotic
and lead to irreversible damage through tissue death
[15]. Preconditioning is the process by which a certain
level of injury is inflicted upon an organ or tissue, how-
ever this injury provides protection to the tissue in the
event of a greater injurious process occurring. By indu-
cing a short period of ischemia “cardiac myocytes reduce
their contractile effort within a few seconds and stop
contracting within the first few minutes” [16], which
leads to energy conservation that helps protect myocar-
dial tissue by reducing the amount of tissue necrosis.
Cardiac ischemic preconditioning may lead to fatal
consequences since impairment to the heart has imme-
diate consequences to the rest of the body – leading to
interruption of all organ system blood supplies which
can result in brain damage, renal failure, pulmonary
edema, etc. Clinical studies have shown that ischemic
preconditioning reduces infarct size following induced
myocardial ischemia [17-20]. This concept was first
introduced in 1986 when Murry and colleagues demon-
strated that ischemic preconditioning reduced infarct
size in dogs from 29% in the control group to 7% in the
group receiving ischemic preconditioning following cor-
onary artery occlusion [20]. The dogs were subjected to
brief periods of coronary artery occlusion (4-5 min) be-
fore an ischemic event consisting of a 40-min artery
occlusion. The 22% reduction in infarct size observed
by Murry et al. suggests that a protective mechanism
underlies ischemic preconditioning.
Additional research has linked several intracellular sig-

naling pathways to the phenomenon of ischemic precon-
ditioning. The primary target in all of these pathways
appears to be the adenosine triphosphate (ATP)-sensitive
K+ (KATP) channel. KATP channels are located on mito-
chondrial, sarcolemmal and nuclear membranes of car-
diomyocytes, and are also found in the brain, pancreatic
β cells, skeletal and smooth muscle, and neurons [21].
The opening of mitochondrial KATP channels leads to
generation of reactive oxygen species (ROS), activating
downstream kinases, resulting in cardioprotection [22] It
has been shown that an initial increase in ROS leads to
activation of the cytokine pathways such as protein kin-
ase C (PKC) and tyrosine kinases (TK) which lead to
opening of the mitochondrial KATP channels leading to a
reduction in ROS. Thus an initial increase in ROS sti-
mulated by ischemia leads to activation of pathways that
result in reduction of ROS. In addition, activation and
expression of KATP channels promotes action potential
shortening and energy conservation, which is protective
by preserving the cardiac tissue [23] Figure 1.

Reperfusion injury
Ischemic injury leads to reperfusion injury, when blood
flow is restored to an ischemic area. The process of
reperfusion leads to severe Ca2+ accumulation—due
to cell membrane damage—that induces opening of the
mitochondrial permeability transition pore (mPTP), which
causes collapse of the mitochondrial membrane, uncoup-
ling oxidative phosphorylation, resulting in ATP depletion
and cell death. Ischemia also leads to conversion of
xanthine dehydrogenase to xanthine oxidase in cardio-
myocytes due to the lack of oxygen for metabolism.
Xanthine oxidase leads to a build-up of hypoxanthine
[24]. Upon reperfusion, xanthine oxidase metabolizes
hypoxanthine, which leads to the overproduction of ROS.
This phenomenon can cause already damaged tissue to



Figure 1 Mechanistic Effects of Ischemic Preconditioning and Volatile Anesthetic Pretreatment with Extracellular-signal Kinases (ERK),
Cytokine Pathways (PI3K/Akt) and Mitochondrial Permeability Transition Pore (mPTP).
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produce superoxide radicals that further damage this tis-
sue, leading to irreversible systolic dysfunction.

Volatile Anesthetics pretreatment
The administration of anesthetics activates or primes
some of the same pathways that lead to protection from
ischemic preconditioning. Zaugg et al. [25] verified that
exposing cardiomyocytes to volatile anesthetic (isoflurane
or sevoflurane) prior to myocardial ischemia decreased
ischemic damage in a dose-dependent manner simi-
lar to the beneficial effect from ischemic precondi-
tioning, Through administration of KATP blockers 5-HD
(mitochondrial KATP blocker) and HMR-1098 (sarcolem-
mal KATP blocker) as well as a KATP activator, diazoxide,
they were able to show that isoflurane and sevoflurane
prime the mitochondrial KATP channel but do not affect
the sarcolemmal KATP channels. Zaugg and colleagues
explained that sevoflurane and isoflurane administration
lead to activation of mitochondrial KATP channels as is
similarly seen in ischemic pretreatment. This same re-
search group showed that outcome following coronary
artery bypass surgery was improved by sevoflurane com-
pared to placebo pretreatment, reducing the incidence of
late cardiac ischemic and congestive heart failure [26].
However, it is not clear that the effect from volatile
anesthesia pretreatment is additive to occlusion-induced
ischemic preconditioning [27]. Warltier et al. demon-
strated better recovery of myocardial function after
15 minutes of coronary artery occlusion when VA were
administered prior to occlusion [28]. In this experiment
dogs were anesthetized with halothane or isoflurane and
their myocardial function returned to baseline within
5 hours after reperfusion. Dogs that did not undergo pre-
treatment with anesthesia experienced a 50% decrease in
myocardial function. Further research has demonstrated a
similar type of cardioprotection from ischemia and myo-
cardial dysfunction using sevoflurane, desflurane and en-
flurane [29-31]. Piriou et al. [31] in a study on rabbit
myocardium showed that desflurane is the most protective
VA in pretreatment for ischemic injury whereas sevoflur-
ane had no significant effect, and pretreatment with halo-
thane and isoflurane induced the same cardioprotective
effect. However, in other models sevoflurane pretreatment
provides cardioprotection [32-39]
Additional mechanisms have been elicited that appear

to be involved in cardioprotection as a result of precon-
ditioning. These mechanisms include the Akt, ROS, and
ERK pathways [32,34,39-49] (Table 1). Channels that
have been identified to be involved are: mPTP, sarcolem-
mal KATP channel, and the mitochondrial KATP channel
[25,33,45,48,50-85] (Table 2).

Mechanistic pathways
Several key mechanistic pathways and regulators that
have been identified as mediators in the protective
effects of pretreatment with VAGs including KATP channel
activation, mPTP modulation and the cytokine pathways
(Akt/PI3K). KATP channels, established as cardioprotective



Table 1 Studies of the effects of Volatile Anesthetic Pretreatment relating to Akt, ROS, and ERK Mechanisms in
cardioprotection

Model Anesthetic Interventions Mechanism Length of
ischemia

Infarct size Ref
#

Isolated, perfused rat hearts with IR
injury

Sevoflurane Compound C, MPG AMPK, eNOS 35 min / [24]

Isolated human right atrial
trabeculae with IR injury

Sevoflurane
& desflurane

MPG ROS 30 min / [26]

Isolated rat ventricular
cardiomyocytes with oxidative stress

Desflurane
& sevoflurane

MPG ROS / / [31]

Global rabbit cardiac IR injury Isoflurane Wortmannin & LY204002 Akt & Bcl-2 40 min 41% control [32]

22% APT

Isolated rat ventricular myocytes
with hypoxia, hydrogen peroxide or
neutrophil exposure

Isoflurane H2O2 or neutrophils Akt & Bcl-2 / / [33]

Inner mitochondrial membranes
from isolated human left ventricles

Isoflurane H2O2, ATP ROS & KATP channel / / [34]

Isolated right ventricular rat
trabeculae with IR injury

Sevoflurane KB-R7943 or SEA0400 PKC, Na+/Ca2+
channel

40 min / [35]

Isolated guinea pig hearts with IR
injury

Sevoflurane Superoxide dismutase, catalase
& glutathione

ROS 30 min 49% control [36]

25% APT

Isolated guinea pig ventricular
myocytes

Isoflurane N-acetyl cysteine, carnosine,
superoxide dismutase, & catalase

ROS, sarcolemmal
KATP channel

/ / [37]

Isolated rat ventricular myocytes
with IR injury

Isoflurane MPG Ca2+, ROS 30 min / [38]

Isolated guinea pig hearts with IR
injury

Sevoflurane Chelerythine, PP101, PP149 ROS, PKC 30 min / [39]

Isolated rat trabeculae with IR injury Sevoflurane Chelerythine, 5-HD, MPG ROS, mPTP, PKC 30 min / [40]

Isolated rat trabeculae with IR injury Sevoflurane L-tyrosine, superoxide dismutase,
glutathione, catalase, & L-NAME

ROS & NOS 30 min 50% control [41]
0

18% APT

Regional rat cardiac IR injury Desflurane Calphostin C, PD98059 PKC, ERK1/2 25 min 57% control [42]

35% APT

Please note that “/” indicates that either this information was not printed or did not apply to the study. Ischemia-reperfusion (IR); Anesthetic Pretreatment (APT);
Wortmannin & LY204002, PI3K inhibitors; hydrogen peroxide (H2O2); MPG, ROS scavenger; reactive oxygen species (ROS); Compound C, AMPK inhibitor;
endothelial nitric oxide synthase (eNOS); KB-R7943 & SEA0400, Na+/Ca2+ channel inhibitors; N-acetyl cysteine, carnosine, superoxide dismutase & catalase (radical
scavengers); PP101, PKC-δ inhibitor; chelerythrine (PP149), PKC-E inhibitor; 5-HD, KATP channel blocker; mitochondrial permeability transition pore (mPTP); L-NAME,
NOS inhibitor; calphostin C, PKC blocker; PD98059, ERK1/2 inhibitor.
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mediators in ischemic preconditioning, have been studied
in VA pretreatment. It has been shown that opening of
the mitochondrial KATP channel leads to generation of
ROS [22]. In a study utilizing rat trabeculae, de Ruijter
et al. [48] demonstrated that the cardioprotective effect of
sevoflurane occurs via the activation of PKC, which leads
to mitochondrial KATP channel opening. Rat trabeculae
underwent ischemia and then 60 minutes of reperfusion,
and the recovery of active force was used as a measure of
cardiac function following myocardial infarction (MI).
Sevoflurane improved recovery of active force to 67% as
opposed to 28% in the control group. However, when the
KATP channel inhibitor (5-HD) was administered along
with sevoflurane force recovery was only 31%, while the
administration of a ROS scavenger and sevoflurane
resulted in force recovery of only 33%. This data indicates
that both the KATP channel and ROS are involved in
the protective mechanisms of sevoflurane. According to
Marinovic et al. [60] it appears that the sarcolemmal KATP

channel is an effector of pretreatment whereas mitochon-
drial KATP channels are both a trigger and an effector.
This was established when both mitochondrial and sarco-
lemmal KATP channel inhibitors were administered during
isoflurane pretreatment in rat cardiomyocytes and a re-
duction in protection from the sevoflurane pretreated
group was observed with 5-HD but not with HMR-1098.
However, if HMR-1098 was applied throughout the ex-
periment rather than during just pretreatment, the pro-
tective effect was abolished.
Piriou et al. [52] noted that the KATP channel is also

linked to the mPTP. With this study it was suggested
that both ischemic preconditioning and VA pretreatment
delays mPTP opening. Delaying mPTP opening is pro-
tective because opening of the mPTP leads to swelling



Table 2 Studies of the effects of Volatile Anesthetic Pretreatment relating to Mitochondrial Permeability Transition
Pore and KATP Channel Mechanisms in Cardioprotection

Model Anesthetic Interventions Mechanism Length of
ischemia

Infarct size Ref
#

Isolated rat ventricular
myocytes

Sevoflurane &
Isoflurane

5-HD, HMR-1098, diazoxide,
chelerythine, 2,4-dinitrophenol

KATP activity / / [17]

Isolated, perfused guinea pig
hearts with IR injury

Sevoflurane Chelerythine, 5-HD [25]

Isolated guinea pig ventricular
myocytes

Isoflurane N-acetyl cysteine, carnosine,
superoxide dismutase, & catalase

ROS, KATP activity / / [37]

Isolated rate trabeculae with IR
injury

Sevoflurane Chelerythine, 5-HD, MPG ROS, mPTP, PKC 30 min / [40]

Isolated, perfused rat heart with
IR injury

Isoflurane / mPTP opening,
O2 consumption

/ / [43]

Isolated, perfused rat heart Isoflurane H2O2 mPTP opening, Ca2+ / / [44]

Regional rabbit cardiac IR injury Desflurane 5-HD mPTP, KATP 10 min / [45]

Isolated mice hearts with IR
injury

Isoflurane / mPTP opening 30 min 26%
reduction
from control

[46]

Global or regional rat cardiac IR
injury

Isoflurane / mPTP opening 30 min 52% control [47]

30% APT

Human right atrial appendages
after anesthesia

Isoflurane HMR-1098 KATP activity 15 min / [48]

Global or regional rat cardiac IR
injury

Isoflurane 5-HD, TEMPO, L-NAME KATP activity, NOS 30 min 62% control [49]

40% APT

Isolated, perfused rat heart with
cardioplegic arrest

Isoflurane 5-HD, HMR-1098 KATP activity / / [50]

Isolated, perfused rat heart with
IR injury

Isoflurane 5-HD, HMR-1098 KATP activity, Ca2+ 30 min / [51]

Global rat cardiac IR injury Isoflurane &
sevoflurane

5-HD KATP activity 10 min / [52]

Isolated rat cardiomyocytes
with oxidative stress

Isoflurane H202, FeSO4, 5-HD, HMR-1098 KATP activity / / [53]

Rat ventricular cardiomyocytes
with patch-clamp

Isoflurane / KATP activity / / [54]

Isolated, rat ventricular
trabeculae

Sevoflurane Chelerythrine, 5-HD, MPG KATP activity, PKC,
ROS

30 min / [55]

Global rat cardiac IR injury Sevoflurane 5-HD KATP activity 25 min / [56]

Isolated, rat ventricular
cardiomyocytes

Isoflurane Chelerythrine, nisoldipine,
glibenclamide

KATP activity & PKC / / [57]

Isolated guinea pig hearts Sevoflurane 5-HD KATP activity 2 hours / [58]

Isolated guinea pig hearts with
patch-clamp

Isoflurane PP106 (PKC activator), PP93 (PKC
antagonist), PP1144 (PKC act), 5-HD

KATP activity / / [59]

Isolated, perfused rat hearts
with IR injury

Isoflurane 5-HD, diazoxide KATP activity, O2- 30 min 37% control [60]

24% APT

Isolated, guinea pig ventricular
myocytes with patch-clamp

Isoflurane ATP, pinacidil, 2,4,-dinitrophenol,
glibenclamide

KATP activity / / [61]

Isolated, perfused guinea pig
hearts with IR injury

Sevoflurane MnTBAP, 5-HD KATP activity, ROS 30 min, 5–
20 min

/ [62]

Global or regional Rat cardiac
IR injury

Isoflurane Glibenclamide KATP activity, PKC / 58% control [63]

42% APT

Isolated guinea pig ventricular
cardiomyocytes

Isoflurane &
halothane

Pinacidil, 2,4-dinitrophenol KATP activity / / [64]
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Table 2 Studies of the effects of Volatile Anesthetic Pretreatment relating to Mitochondrial Permeability Transition
Pore and KATP Channel Mechanisms in Cardioprotection (Continued)

Isolated, perfused guinea pig
ventricular myocytes

Isoflurane ADP, nisoldipine, 2,4-dinitrophenol,
ATP, adenosine, GTP

KATP activity, PKC / / [65]

Isolated guinea pig ventricular
myocytes

Isoflurane Genistein & tryphostin B42 Tyrosine kinase depend
KATP

/ / [66]

Isolated, perfused rat hearts
with IR injury

Isoflurane Glyburide KATP activity 15 min / [67]

Isolated human right atrial
trabeculae with IR injury

Desflurane Glibenclamide, phentolamine,
propranolol, DCPCX, 5-HD & HMR-1098

KATP activity, adrenergic
role

30 min / [68]

Isolated guinea pig hearts with
IR injury

Sevoflurane 5-HD KATP activity 4 hours 36% control [69]

25% APT

Isolated, perfused rabbit hearts
with IR injury

Isoflurane 5-HD, HMR-1098 KATP activity / 20% control [70]

10% APT

Participle, isolated rat hearts
with IR injury

Isoflurane 5-HD KATP activity 20 min / [71]

Global Dog cardiac IR injury Sevoflurane ATP, 5-HD KATP activity 15 min / [72]

Isolated, perfused human atrial
trabeculae

Isoflurane &
halothane

Glibenclamide, DPCPX KATP activity 60 min / [73]

Isolated, perfused rat hearts
with IR injury

Sevoflurane &
halothane

Glibenclamide KATP activity, 45-60 min / [74]

Isolated, perfused rat hearts Sevoflurane Pinacidil, glyburide KATP activity 60 min / [75]

Regional Dog cardiac IR injury Isoflurane Glyburide KATP activity 5 min, x 5 / [76]

Regional Dog cardiac IR injury Isoflurane Glibenclamide KATP activity 15 min / [76]

Please note that “/” indicates that either this information was not printed or did not apply to the study. 5-HD, KATP inhibitor; HMR-1098, sarcolemmal KATP
inhibitor; diazoxide & pinacidil, KATP activators; chelerythrine, PKC-E inhibitor; N-acetyl cysteine, carnosine, superoxide dismutase & catalase (radical scavengers);
reactive oxygen species (ROS); potassium ATP channel (KATP ); Anesthetic Pretreatment (APT); ischemia-reperfusion (IR); mitochondrial permeability transition pore
(mPTP); hydrogen peroxide (H2O2); inducible nitric oxide synthase (iNOS); TEMPO, O2 scavenger; L-NAME, NOS inhibitor; ferrous sulfate (FeSO4); MPG, ROS
scavenger; nisoldipine, L-type Ca2+ channel blocker; glibenclamide, KATP inhibitor; PP106 & PP1144, PKC activators; PP93, PKC inhibitor; adenosine triphosphate
(ATP); 2,4-dinitrophenol, ATP production inhibitor; MnTBAP, radical scavenger; adenosine diphosphate (ADP); guanosine triphosphate (GTP); genestein & tryphostin
B42, tyrosine kinase inhibitors; glyburide, KATP inhibitor; phentolamine, α blocker; propranolol, β blocker; DCPCX, adenosine A1 antagonist.
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of the mitochondrial matrix, which causes collapse of
the inner mitochondrial membrane, uncoupling of the
electron transport chain, and release of cytochrome c
along with other apoptotic factors such as Bax, caspase-
9 and ATP. Administering 5-HD abolished the improved
tolerance to calcium-induced mPTP opening. This
demonstrates a likely connection between the mPTP
and KATP channel.
Another pathway that has been identified clinically in car-

dioprotection is the Akt/PI3k pathway, which is a key intra-
cellular signaling pathway in apoptosis. Raphael et al. [40]
studied the role of the Akt/PI3K pathway in VA cardiopro-
tection. Examination of DNA fragmentation conducted
using the TUNEL method demonstrated that isoflurane
pretreatment significantly reduced the percentage of
apoptotic nuclei. Furthermore, evaluation of the Akt and
phosphorylated-Akt (active Akt) expression during ische-
mia and reperfusion revealed that phosphorylated Akt
was expressed in significantly higher numbers for the
ischemia-reperfusion and isoflurane pretreated groups
while administration of wortmannin and LY294002 (PI3K
inhibitors) led to inhibition of phosphorylated Akt. Fur-
ther, treatment with wortmannin and LY294002 abolished
the cardioprotective effects of anesthetic pretreatment, indi-
cating that phosphorylated Akt leads to cardioprotection.
The extracellular-signal kinases (ERK) pathway has

been linked to myocardial protection elicited by pre-
treatment with VA. Toma et al. [86] studied ERK phos-
phorylation (activated form of ERK) that was induced by
pretreatment with desflurane; rats were subjected to
myocardial ischemia and reperfusion. Administration of
the MEK/ERK1/2 inhibitor PD98059 with desflurane
eliminated cardioprotection that was observed in the
desflurane-only pretreatment group. This points to
MEK/ERK1/2 as modulators of the protective effects of
VA administration prior to injury. Western blot analysis
showed an early increase in ERK phosphorylation with
the first administration of desflurane 10 minutes post-
MI. However, this decreased with the second desflurane
dose 25 minutes post-MI. Even though it has been
shown that ERK1/2 is a downstream effector of PKC
mediating effects it was discovered that ERK phosphor-
ylation was not PKC dependent. Giving rats a dose of
calphostin C (PKC inhibitor) did not affect the phos-
phorylation of ERK1/2 observed on Western blot. These
results illustrate ERK1/2 activation as cardioprotective
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with a single dose of desflurane but this cardioprotection
is diminished with an additional dose, highlighting the
importance of administration protocols for VA pretreat-
ment. Finally, it was indicated that ERK1/2 activation is
independent on PKC.
In addition, Ca2+ flux has been linked to cardioprotec-

tion via VA pretreatment as well as nuclear factor-κB
(NF-κB) involvement. An et al. [87] measured Ca2+ con-
centration by fluorescence and demonstrated that pre-
treatment with sevoflurane improved coronary blood flow
and reduced systolic Ca2+ loading. Further, decreased de-
struction of sarcoplasmic reticulum Ca2+− cycling pro-
teins was observed on Western Blot. The reduced
systolic Ca2+ leads to the conclusion that this is a cardio-
protective effect since reperfusion injury—which leads to
irreversible damage—is a result of Ca2+ excess. The accu-
mulation of Ca2+ after ischemia-reperfusion leads to acti-
vation of NF-κB, which causes release of inflammatory
mediators. Further research demonstrated preservation of
calcium cycling proteins following VA pretreatment in a
myocardial ischemia-reperfusion model [58]. Konia et al.
[88] studied the inhibition of NF-κB in rats pretreated
with sevoflurane; parthenolide (IF-κB inhibitor) was admi-
nistered to prevent activation of NF-κB. It was concluded
that inhibition of NF-κB leads to even greater protection
from ischemia than sevoflurane administration alone;
sevoflurane treatment group exhibited an infarct size of
19%, parthenolide group exhibited an infarct size of 18%,
the sevoflurane +parthenolide group exhibited an infarct
size of 10%, compared to the control groups with an in-
farct size of 59%. The involvement of NF-κB for anesthetic
pretreatment needs to be further examined and directly
linked to anesthesia pretreatment.

Clinical research
While anesthetic pretreatment demonstrates cardiopro-
tection in the laboratory, it is crucial to answer the
question whether these cardioprotective effects are also
clinically applicable. Cardiac surgery is a suitable model
for studying VA pretreatment, however the administra-
tion of other anesthetics during the cardiac surgery may
also provide protection, leading to difficulty of clearly
answering the question of whether VA are cardioprotec-
tive clinically. Clinical trials have evaluated VA pretreat-
ment on patients undergoing cardiac surgery - especially
CABG, some of which support a beneficial effect of VA
for decreasing myocardial infarction, troponin release,
hospital length of stay and death [12,89,90].For example,
in studies involving CABG patients, Guarracino et al. [91]
and Meco et al. [92] (Meco 2007) found that desflurane ad-
ministration was associated with lesser postoperative eleva-
tion of biochemical markers of myocardial injury than total
intravenous anesthesia. In contrast, De Hert et al. did not
find a difference in postoperative biochemical markers of
myocardial injury in patients given desflurane or sevo-
flurane compared to those receiving total intravenous
anesthesia. However, patients given either VA had shorter
hospital length of stay and lower 1-year mortality [93]. In
a retrospective study including over 10,000 cardiac surgery
patients, VA administration was associated with better
outcomes in patients undergoing elective cardiac surgery.
However, in patients with severe preoperative myocardial
ischemia or cardiovascular instability, the administration
of VA was associated with worse outcome than the ad-
ministration of total intravenous anesthesia [13]. Added
evidence to support a benefit to the use of VA in cardiac
surgery was reported by Bignami et al. [11] who found
better outcomes following cardiac surgery in centers in
which cardiac surgery patients are given VA. This analysis
suggested the benefit was greater when VA are given for a
greater portion of the procedure. Amr et al. found both is-
chemic preconditioning and isoflurane preconditioning
were associated with better cardioprotection than cold
blood cardioplegia in CABG patients anesthetized with
total intravenous anesthesia [94]. Further evidence to sup-
port a beneficial effect of VA administration to CABG
patients is that remote ischemic preconditioning was asso-
ciated with benefit in patients anesthetized with VA but
not in those given propofol for anesthesia [95]. An inter-
national consensus conference provided expert opinion
support for the use of VA in hemodynamically stable car-
diac surgery patients [96] as a means to reduce myocardial
damage and death. This consensus concluded that the fur-
ther large randomized controlled trials of VA administra-
tion to cardiac surgery patients are necessary.
Several studies have used human cardiac tissue to exam-

ine the benefits of VA pretreatment as well as to identify
similar mechanistic pathways involved to those elicited in
animal studies. Some key mechanistic pathways have been
examined using drugs that antagonize ion channels and
pathways involved in anesthesia pretreatment. Jiang et al.
[42] used human ventricular muscle cell not suitable for
donor transplantation, to examine the presence of mito-
chondrial KATP channel activity in human tissue. By pro-
viding a dose of 5-HD to cells it was demonstrated that
modulation of the mitochondrial KATP channel is involved
in human as well as animal cardiomyocytes during ische-
mic injury. Administration of 5-HD reduced mitochon-
drial KATP channel activity in the treatment group. In
another group, isoflurane increased mitochondrial KATP

channel activity and increased peak current beyond that of
the control group demonstrating the role of KATP channel
in VA pretreatment clinically. Further clinical studies have
shown that ROS are involved in cardioprotection from
anesthetic pretreatment; therefore, they investigated the
effects of exogenous hydrogen peroxide (H2O2) in their
apparatus. First, a cluster of mitochondrial KATP channels
were suppressed by ATP administration, next H2O2 was
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given which resulted in a reactivation of the KATP channels
despite the continued presence of ATP indicating that ROS
influences KATP channels in human myocardium, in vitro.
In an in vitro study using right atrial appendages

obtained from adult patients undergoing cardiac surgery,
Mio et al. [55] explored the mechanistic effects of VA
pretreatment. They suggested that KATP channels are
involved in cardioprotection from pretreatment with
volatile anesthetics, as their results demonstrated isoflur-
ane decreased stress-induced cell death and maintained
mitochondrial function. Isoflurane preserved mitochondrial
oxygen consumption which was initiated by pyruvate-
malate and accelerated by adenosine diphosphate (ADP).
Preservation of mitochondrial oxygen consumption indi-
cates a cardioprotective effect from isoflurane. In addition,
they noted that isoflurane was protective via the sarcolem-
mal KATP mechanism. Administration of HMR-1098
diminished the cardioprotective effect of isoflurane from a
cell death percentage of 21% (without HMR-1098) to a
cell death percentage of 41% with HMR-1098 indicating
the involvement of KATP channel clinically.
Hanouz et al. [34] studied the role of ROS in cardio-

protection from pretreatment with sevoflurane and des-
flurane by using in vitro human right atrial trabeculae.
Recovery of force of contraction was studied in each ex-
perimental group: control, sevoflurane pretreatment, and
desflurane pretreatment. Force of contraction recovery
was significantly improved in the sevoflurane group
(from 53% to 85%) and in the desflurane group (from
53% to 86%). Treatment with MPG (ROS scavenger)
prevented the force of contraction recovery: in the des-
flurane +MPG group, force of contraction changed from
53% to 48% and in the sevoflurane +MPG group force of
contraction changed from 53% to 56% (both the same as
control). Since the administration of MPG abolished re-
covery in both the desflurane and sevoflurane groups,
they concluded that ROS must play a role in the cardio-
protective mechanisms triggered by VA pretreatment.
The mechanistic pathways of cardioprotection in human
tissue has been evaluated through in vitro studies, how-
ever further in vivo studies are necessary to definitively
Table 3 Studies of the effects of Volatile Anesthetic pretreatm

Model Drug(s) T

General anesthesia Sevoflurane & propofol E

General anesthesia Sevoflurane E

General anesthesia Sevoflurane E

General anesthesia Desflurane, sevoflurane, propofol E

General anesthesia Sevoflurane & desflurane E

General anesthesia Sevoflurane E

General anesthesia Sevoflurane E

General anesthesia Sevoflurane E
establish VA pretreatment as a treatment option for car-
dioprotection in patients at-risk for myocardial ischemia.
Cardiac side effects of medical gas anesthesia
All VA have clinically relevant myocardial depressant
effects when given in usual anesthetic concentrations [97].
These effects may contribute to the cardioprotective
effects of VA, but must be considered when administering
VA to patients with significant cardiac dysfunction. In
addition to myocardial depressant effects, VA adminis-
tered in clinically relevant concentrations cause vasodila-
tion, which can contribute to hemodynamic instability
when given to patients with ischemic cardiac disease.
Additionally, several studies have demonstrated that ad-
ministration of VA may lead to prolongation of the QT
interval [98-105]. This is concerning because a prolonged
QT interval increases the risk for arrhythmia develop-
ment. The QT interval is the portion on an electrocardio-
gram representing the portion of the cardiac electrical
cycle in which both depolarization and repolarization of
the ventricles occur. Prolonging the length of this interval
increases a patient’s risk for torsades de pointes, which
may lead to ventricular fibrillation [106,107] as has been
reported during anesthetics with VA [108-110]. Despite
this, VA use has been reported as safe in patients with
known long QT syndrome [111,112]. Furthermore, even
though studies have demonstrated that VA administration
prolongs the QT interval, ventricular arrhythmia inci-
dence was lower in the subset of 10,535 CABG patients
who were given sevoflurane compared to those given pro-
pofol for anesthesia [13]. Other studies of patients under-
going CABG did not report an increase in ventricular
arrhythmias following pretreatment with VA [4,26,113].
Further, animal studies show that VA pre- or post-
conditioning provides an antiarrhythmic effect [114-116].
However, in patients whose medical condition may predis-
pose to cardiac dysrhythmia or hemodynamic instability,
such as those with severe preoperative myocardial ische-
mia, it is reasonable to use greater caution when adminis-
tering VA for cardiac protection (Table 3).
ent relating to QT changes and arrhythmias

echniques Mechanism Ref #

CG Pwt, QTc intervals & QT [85]

CG Qt interval [86]

CG QT interval, Tp-e interval [87]

CG QT dispersion [88]

CG QTc intervals [89]

CG QT intervals [90]

CG QT, QTc, TDR, TdP, Tp-e intervals [91]

CG QT interval [92]
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Lack of cardioprotection?
Zangrillo et al. [117] recently demonstrated that no cardi-
oprotection exists with pretreatment of VA in non-cardiac
surgeries. This study suggests that non-cardiac surgery
patients do not receive any reduction in release of tropo-
nin postoperatively (myocardial injury marker). Similarly,
Piriou et al. [118] did not find significant effects of VA in a
randomized trial of patients undergoing CABG, while
De Hert et al. [93] in a multicenter randomized trial
studying over 400 patients found no differences in mar-
kers of cardiac damage following CABG in patients given
VA compared to intravenous anesthesia. Bignami et al.
did not find benefit from sevoflurane administration to
patients with known coronary artery disease who were
undergoing mitral valve surgery [119]. A meta-analysis of
studies enrolling over 6,200 patients undergoing noncar-
diac surgery did not find myocardial infarction or death in
the studies reviewed, which limited analysis of choice of
anesthetic technique impact on clinically relevant out-
comes [120]. However, Bassuoni et al. reported a benefi-
cial effect of VA administration compared to propofol
anesthesia [121]. They found VA administration was asso-
ciated with less myocardial ischemia and troponin release
after noncardiac peripheral vascular surgery in a study of
126 patients who did not have significant additional
comorbid conditions.Recommendations from the American
College of Cardiology/American Heart Association guide-
lines that state that patients at risk for myocardial infarction
during non-cardiac surgery would benefit from pretreat-
ment with gas anesthesia, if hemodynamically stable [122].

Conclusion and future direction
Abounding evidence has shown that pretreatment with
volatile anesthetics protects against ischemia/reperfusion
injury in both animal and clinical studies. Future investi-
gations need to evaluate the most optimal anesthetic
agent, concentration and administration protocol for the
best cardioprotective benefits of pretreatment, as studies
have noted that there is a difference in cardioprotection
dependent upon pretreatment protocol with VA [11].
Additionally, a comprehensive mechanistic model needs
to be elicited that integrates all mechanisms evaluated
thus far. Several other players in the mechanism of car-
dioprotection have been examined. However, further
studies are needed to confirm these mechanisms, which
include: caveolin [123], caspase [124], Pim-1 kinase [125],
β-adrenergic [126], and coronary vasodilation [127,128].
We conclude the results of laboratory studies provide

mechanistic pathways supporting the cardioprotective ef-
fect of pretreatment with VA. Our opinion is these effects
should be beneficial to patients with ischemic cardiac dis-
ease who are undergoing surgery. However, the optimum
dose and timing of VA administration for this effect must
be further investigated. It is reasonable to use greater
caution when administering VA for cardiac protection to
patients in whom preoperative hemodynamic conditions or
cardiac rhythm would magnify the known side effects of
VA (vasodilation, cardiac depression or QT prolongation).
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