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Abstract

biological effects, and to elucidate its future potential.

activation, Argon plasma coagulation

Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in
the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at
hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a
potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over
using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as
in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral
Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand,
some warning has been made to potential negative effects of argon treatments in cases of ischemic brain
injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for
argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an
organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon
gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its
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Introduction

Argon gas is considered a small noble gas element
that has been applied in a number of fields. It has
been generally classified as a nonreactive or inert gas
providing a view that it does not contain any biologic-
ally active characteristics. In fact, argon has demon-
strated characteristics such as narcosis at hyperbaric
pressures and more recently neuroprotective and
organoprotective behaviors. Pharmaceutical drugs and
surgical interventions have been widely accepted and
commonly used methods of clinical treatments for a
variety of applications such as the neuroprotection
[1-4]. However, the high cost and development of
new drugs and surgical techniques have exposed a
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need for new and easy to administer treatments.
The application of argon as a medical gas presents a
possible relief to this search and provides distinct
advantages.

This review seeks to show the development of argon
in the medical field with an emphasis on its ability as a
neuroprotectant. In order to provide a foundation of ar-
gons role in the medical field, a summary of its discovery
and characteristics will be first provided. We will then
discuss the evidence suggesting the affirmative ability of
argon as a neuroprotectant and highlight some evidence
suggesting otherwise. In order to better understand how
argon provides its biological actions, a review and dis-
cussion of the possible mechanisms of receptor interac-
tions and apoptotic cellular pathways will be provided.
Finally, we will consider the future of argon as a clinical
therapy and other potential applications in the medical
field.
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History and characteristics of argon

In 1785, Henry Cavendish isolated atmospheric gases in
an attempt to characterize and quantify the substituents.
In an attempt to combust the samples to find their re-
activity profile, a small constituent of isolated gas sam-
ples believed to be nitrogen did not give the expected
reaction and remained unchanged. After further analysis,
it was concluded that the nonreactive nature of this gas
sample was considered to be an error due to contamin-
ation [5]. The results were brought to attention again in
1894 when Lord Rayleigh and William Ramsay’s experi-
mentation on atmospheric gases found that a similar
amount of unreactive gas contained a unique set of char-
acteristics. They confirmed that the unreactive gas was
observed by Henry Cavendish and classified it to be a
new element “Argon” [6].

Argon belongs to a family of elements located on the
final column of the periodic table of elements termed
“noble gases” which include the elements helium, neon,
argon, krypton, xenon, and radon. The full electron
valence shell of these elements prevents the formation
covalent bonds and finding these gases in compound
form remains a rare occurrence [7]. The inability to
form strong covalent bonds with other elements de-
velops an identity for the gases to be unreactive, group-
ing these gases under another term: inert gases.
Though the term “inert gas” implies these gases have
no active characteristics, several instances have been
noted in which these gases are able to produce phys-
ical and biological effects [8]. The biological activity
of argon can be attributed to its atomic structure in-
teractions with enzymes and receptors. Though argon
is unable to form strong covalent bonds to produce
chemical reactions, it does have the capacity to inter-
act with enzymes and receptors through charge-
induced dipole and van der Waals interactions as a
stabilizing component key in relating argon’s ability as
an anesthetic and neuroprotectant [9,10].

Due to the similar structures and reactive natures of
argon and xenon, a propensity to compare the two ele-
ments has appeared in a number of reports [11-13].
Xenon is one of the earliest and most widely investigated
of the noble gases and is regarded as a potent anesthetic
and a convincing neuroprotectant [14-17]. However, the
limited availability (0.09 ppm) and high cost of xenon
has prevented it from becoming a commonly used ther-
apy option. The property of xenon as an inert gas has
opened speculation of the other noble gases as possible
alternatives with several of the noble gases revealing po-
tentials in the medical field. In particular, argon displays
attributes that position it as a likely alternative to xenon
especially in the field of neuroprotection. Furthermore,
the reasonably high availability (9340 ppm) of argon in
the atmosphere allows for a low difficulty in obtaining
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the gas and makes argon relatively more cost effective as
compared to xenon [18].

Effects of argon as a medical gas

Argon as a narcotic agent

The first biological effect of argon gas can be found as a
description of its narcotic capabilities represented in a
study pertaining to the high-pressure effects of naturally
occurring gases during deep sea diving. Previous obser-
vations noted that under high pressure with normal re-
spiratory air, divers begin to develop narcotic symptoms
of slowed mental cognition and psychological instability
[19-21]. After isolating the gases, it was surmised that
argon gas produces a strong narcotic effect at high pres-
sures (>10 atm) as compared to helium and nitrogen,
while xenon is able to produce narcotic symptoms at at-
mospheric pressure [22]. It was also theorized that the
narcotic effects argon exerts is being created in a phys-
ical rather than a chemical manner due to its character-
istic as inert gas lacking chemical reactions in the
body [23].

The mechanism in which argon displays its
anesthetic ability has been suggested to be from the
stimulation of y-aminobutyric acid type-A receptors
(GABAAR) [24]. Though argons involvement has yet
to be confirmed, other anesthetic gases such as nitro-
gen have also been suggested to stimulate the
GABAAR as well [25]. Of further interest, other
anesthetic gases such as xenon and nitrous oxide are
described to antagonize N-methyl-D-aspartate recep-
tors (NMDAR) to promote their narcotic effects
[26,27]. The antagonism of NMDAR remains a plaus-
ible method for argon-induced anesthesia, but has yet
to be established and is still under investigation. Add-
itionally, dopamine release has been connected to
both the activity of GABA,R and NMDAR, and a de-
crease in dopamine activity in the brain would pro-
mote a narcotic effect [28,29]. Argon gas treatments
to rats found that levels of extracellular striatal dopa-
mine are reduced at pressures exceeding 2.5 MPa (ap-
proximately 10 atm), suggesting a neurochemical
method of which argon may present its anesthetic ef-
fects [30].

A number of gases including the noble gas family ex-
hibit anesthetic tendencies, but greatly differ in the cri-
teria required for their narcotic abilities to manifest [31].
Argon has been described as being an anesthetic agent,
but is only able to exert these effects under hyperbaric
pressures. Xenon has also been portrayed as a potent
anesthetic, but manifests its narcotic effects at normoba-
ric pressures. The noble gases helium and neon lack an
observable anesthetic effect for reasons still under inves-
tigation [31,32]. The capacity of argon and xenon to
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produce anesthetic effects at different pressures may sig-
nify an important difference when considering their
treatment potential in the medical field.

Ischemic neuroprotective models

Of the potential uses argon in the medical field, studies
pertaining to its ability as a neuroprotective agent have
been most prominently examined. Investigations of neu-
roprotection seek to improve recovery of motor and be-
havioral functions of patients that have experienced
neurological damage in cases such as but not limited to
physical trauma [33,34]. Argon neuroprotective studies
have largely been examined models of ischemic brain in-
juries in which the deprivation of essential nutrients
such as glucose and oxygen to the brain may damage
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tissues and activate inflammatory and apoptotic path-
ways in surrounding tissues leading to neuronal death
[35-39]. Oxygen-Glucose Deprived (OGD) environments,
Traumatic Brain Injury (TBI), and the Middle Cerebral
Artery Occlusion (MCAQO) models are highly accepted
methods of establishing ischemic brain injury treatments
in rodent models and are the common methods of which
argon neuroprotection treatments have been examined
(Figure 1). An OGD model places a tissue of interest in a
medium depriving the tissue of oxygen and glucose to
simulate ischemic conditions in vitro [40]. The TBI model
is a physical method of applied blunt force to the skull
resulting in inflammatory and ischemic conditions with
treatments possible in vitro and in vivo [41,42]. The
MCAO model is considered an in vivo method of

(A)
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(C)
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ischemic infarction with treatments examined in vivo.

-G
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Figure 1 Commonly used ischemic models of neuroprotection. (A) An OGD model of neuroprotection places brain tissue into a medium
that deprives it of oxygen and glucose in vitro. (B) The TBI model uses an apparatus to cause a forceful impact on the brain and results in
ischemic tissue damage with treatments possible in vivo or in vitro. (C) The MCAO model ligates the middle cerebral artery to produce an
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ligating the middle cerebral artery to simulate ischemic
arterial blockage followed by reperfusion [43].

Argon neuroprotection in vitro

A study by Jawad and colleagues aimed to compare the
neuroprotective ability of the noble gases helium, neon,
argon, and krypton to xenon in an Oxygen-Glucose De-
prived (OGD) environment. Fetal mice cerebral cortices
were exposed to an OGD medium and then treated to
the noble gases (75% noble gas, 20% O, and 5% CO,). It
was observed that argon and xenon improved neuronal
survival while helium, neon, and krypton failed to sig-
nificantly reduce neuronal death. Additionally, they ob-
served that administering the gases without an OGD
environment, is able to improve neuronal survival as
compared to a control environment (75% N, instead of
noble gas) [18].

Loetscher and colleagues examined both models of
OGD and TBI in vitro and found that all concentrations
of the argon-oxygen gas mixtures tested (25-74% Ar,
21% O,, 5% CO,, N, the rest) were effective in reducing
cellular trauma injury to hippocampal brain slices of
mice pups in both models. It was also noted that in the
TBI model 50% argon exhibited the greatest reduction
in injury but a concentration of 74% argon greatly attenu-
ated this reduction in damage signifying a dose-dependent
relationship of argon gas treatments. Additionally, it was
demonstrated that delayed argon administrations given up
to 3 hours after the insult were effective in reducing tissue
damage [44]. Similarly, a study by Harris and colleagues
found that argon (50% atm) and xenon (50% atm) gas are
able to greatly attenuate the amount of injury up to
72 hours after TBI examined in vitro. The author’s note
that though argon was able to reduce the total injury sig-
nificantly, it was not as great of a reduction as found by
Loetscher and colleagues [45].

Argon neuroprotection in vivo
An in vivo examination by Ryang and colleagues using
the MCAO model treated adult rats with 50% argon
(50% O,) 1 hour following reperfusion of the middle
cerebral artery. Reversals in tissue damage and a reduc-
tion in the edema-infarct volumes were observed up to
24 hours after reperfusion of the artery. The argon
treated rats also demonstrated improved neurological
function suggesting greater levels recovery and support-
ing the positive neuroprotective ability of argon. Further-
more, no significant differences of heart rate, blood
pressure, and blood-gas measurements were monitored
after argon inhalation signifying that normal physio-
logical parameters were not disturbed [46].

Further supporting evidence for argon gas neuropro-
tection can be found in a study by Zhuang and col-
leagues aiming to compare noble gases treatments of
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helium, argon, and xenon to a control of nitrogen in a
model of neonatal hypoxia-induced brain injury. Gas
treatments (70% Ar/He/Xe and 30% O,) were given
2 hours after the hypoxic insult in which the right com-
mon carotid artery was ligated. They observed that cell
morphology in the hippocampus right hemisphere was
significantly restored for all treatment groups, but that
argon was able to restore cell viability to the greatest ex-
tent. It was also noted that argon and xenon treatment
groups displayed reductions of infarction sizes and that
neurocognitive behavior results showed improvement
for all gases [47].

Patients suffering a cardiac arrest may exhibit neuro-
logical damage by consequence of global brain ischemia
and deregulation of elements such as coagulation and
inflammatory factors [48]. Post-cardiac arrest, the sus-
tained neurological damage may provide complications
in the survival and recovery. In an effort to remedy this
situation, Briicken and colleagues examined the effects
argon gas provided after cardiac arrest in rats. The treat-
ments were applied 1 hour after cardiac arrest resuscita-
tion using 70% argon (30% O,). It was found that argon
inhalation improved neurological scores with fewer dam-
aged neurons observed in the cortex and hippocampal
regions [49]. Similarly, Ristagno and colleagues found
that treatments of 70% argon (30% O,) for 4 hours fol-
lowing porcine cardiac arrest resuscitation resulted in
significantly improved neurological scores up to 72 hours
after the injury [50].

Negative neuroprotective effect

Though a number of ischemic brain injury studies have
suggested a beneficial neuroprotective outcome due to
argon gas exposure, a study by David and colleagues
found that there remains a possibility for adverse conse-
quences. A three-part examination found that positive
neuroprotection was noted in cases of OGD and N-
methyl-D-aspartate (NMDA) induced neuronal death,
but negative effects were found in a model of MCAO.
An in vivo treatment of 50% argon (50% O,) was applied
2 hours after a MCAO-induced injury in adult rats.
Though the total brain damage was decreased, it was
also found that argon increased the amount of damage
found in the sub-cortex region with no improvements of
behavior or motor functions. This is the first study to re-
veal a detrimental outcome of argon gas treatments in a
model of neuroprotection [51].

The examination of the OGD-induced environment
measured lactate dehydrogenase (LDH) as a marker of
neuronal injury and found that argon-oxygen gas expos-
ure (37.5% to 75% argon) decreased neuronal injury with
the greatest reduction in damage found 3 hours after the
insult. Additionally, NMDA injections were used to stimu-
late neuronal death with treatments of argon-oxygen gas
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(15-75% argon) given 1 hour after injection. Consistent with
previous studies, treatments of 50% argon showed the max-
imal reduction of neuronal death in both the OGD and
NMDA-induced cytotoxic environments. Though improve-
ments were seen in the OGD environment and NMDA-
induced cytotoxic models, the authors assess that argon gas
would not be a suitable post-ischemic neuroprotective treat-
ment for clinical use due to the negative outcome found in
the MCAO examination, but also suggest that argon may be
a useful neuroprotectant for other brain injuries such as TBL

Mechanisms

NMDAR mediated neuroprotection

As a neuroprotectant, little is understood about argons
interactions to receptors and enzymes or the cellular
pathways involved after its initial interactions, though
there have been hints as to the involvement of NMDAR
and GABA,R. Both NMDAR and GABAAR are widely
accepted to be involved in a number of cell survival
pathways and are also considered to be major targets of
a number of anesthetics [52-55]. NMDAR are largely
stimulated by glutamate and are considered to be excita-
tory neuronal receptors, while GABA4R are largely stim-
ulated by y-aminobutyric acid (GABA) and are considered
to be inhibitory neuronal receptors [26,56]. It should also
be considered that an increase of activity of one receptor
type could result in lowering the activity of the other due
to their similar but opposite involvement in their excitatory
actions.

Previous reports have theorized that NMDAR interac-
tions may be implicated in the mechanism of argon gas
neuroprotection. An intrinsic pro-apoptotic mitochon-
drial pathway is activated in consequence of increased
glutamate release and stimulation of NMDAR. The over-
stimulation of NMDAR produces a large influx of intra-
cellular Ca**, which is known to be a major cause of
cytotoxic neuronal death [57-61]. The influx of Ca%t
triggers a rise in the pro-apoptotic Bax protein that
competes with the anti-apoptotic signaling of Bcl-2 and
Bcl-xL proteins [57,62,63]. Zhuang and colleagues found
that the argon treated groups promoted an increased ex-
pression of the pro-survival protein Bcl-2 while having
no effect on Bax or Bcl-xL expression in neuronal cells
[47]. Furthermore, the attenuation of NMDA induced
neuronal damage by argon gas observed by David and
colleagues offers additional conjecture of NMDAR in-
volvement [51].

Conversely, Harris and colleagues provide evidence that
NMDAR are likely not involved in the neuroprotective ac-
tivity of argon. Using glycine as a competitive inhibitor of
NMDAR, no changes in argons neuroprotective behavior
were discovered suggesting another mechanism in which
argon activity is mediated. In addition, they also found
through electrophysiological methods that the activity of
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TREK-1 potassium channels is not affected with argon ap-
plication. Though the study didn’t expand on the cellular
mechanisms of the neuroprotective behavior seen, it pro-
vides a clear representation of how NMDAR do not seem
to be involved in argons neuroprotective behavior [45].

GABA,R mediated neuroprotection

It can also be proposed that GABA AR may play a role in
producing the neuroprotective effects of argon rather
than NMDAR. Argon has been suggested to change
GABA4R activity by binding to multiple discrete sites on
the receptor [24]. However, this observation was sug-
gested in relation to argons narcotic properties with no
relationship to its neuroprotective properties being made.
Several examinations of other drugs have observed that
the stimulation of GABAAR has the ability produce neuro-
protective results [64-66]. Of important consideration is
that the involvement of GABA4R to argon signaling is in
relation to its narcotic properties that are displayed only
at hyperbaric pressures, while neuroprotection studies of
argon are largely done at normobaric pressure.

Mek-erk 1/2 pathway involvement

The neuroprotective behavior of argon may not be re-
ceptor mediated but may be the result of direct pathway
participation. Fahlenkamp and colleagues noticed that
argon treatments to cells in cultures increased expres-
sion of extracellular signal regulated kinases (ERK) 1/2
in neurons, microglia, and astrocyte cells. ERK 1/2 is a
highly ubiquitous protein associated with a number of
cellular pathways such as inflammatory and cell survival
pathways depending on the methods of activation. It has
been demonstrated that ERK 1/2 is largely regarded as a
pro-death marker of neuronal cells, but through
methods of transient stimulation can also be part of a
pro-survival pathway [67]. Though these results did not
investigate outcome results associated with the increase
of ERK 1/2, it can be proposed that argon may be con-
nected to the mitogen activated protein kinase (MAPK)
kinase (MEK)-ERK 1/2 pathway in neuronal cells. Mea-
surements found that argon does not change the level of
phosphotyrosine phosphatases suggesting that an indir-
ect cellular pathway is not stimulated. They suggest that
because of the varied nature and independency from the
cellular background of the MEK-ERK 1/2 pathway,
argon may directly stimulate the pathway to assert its
neuroprotective effects rather than through receptor me-
diation [68] (Figure 2).

Future outlook

The use of argon gas for neuroprotective medical appli-
cations is a recent endeavor that has not expanded into
clinical examinations as of yet. However, David and col-
leagues provided an examination on argons effects in
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combination with tissue plasminogen activator (tPA)
that can be regarded as a indicator that an interest in its
clinical application exists. In cases of acute ischemic
stroke, the current and only approved method of clinical
therapy has been the administration of tPA. At levels below
50% argon gas (25% oxygen and the rest nitrogen to
complete mixture), argon decreased the catalytic and
thrombolytic efficiency of tPA, but increased them at levels
above 50% argon. These results seem to promote that
argon gas may enhance the efficiency of tPA treatments
and may foster support for use in clinical examination [69].

Besides argons use as a neuroprotectant, argon gas has
also demonstrated organoprotectant traits. Irani and col-
leagues found that kidney recovery after storage with
argon gas was improved as compared with mediums of
xenon, nitrogen, or air. It was assessed that argon gas
may provide a potential organoprotecive environment
for organ transplants by preserving the quality and func-
tion of the kidney [70]. In addition, another study found
that argon gas is able to protect the myocardium to in-
farction in cases of coronary artery occlusion and reper-
fusion. This study also examined the role of ERK 1/2

signaling, but did not find any changes in response to
argon gas treatments [71]. It has also been found that
argon and xenon (75% Ar/Xe, 20% O,, and 5% CO,) are
able to limit apoptotic cell death when given up to
16 hours after inducing apoptosis to osteosarcoma cells
in culture [72].

Another use of argon in the medical field has been as
a surgical tool. Argon Plasma Coagulation (APC) is a
non-contact technique that uses high frequency stimula-
tion of argon plasma to cauterize surrounding tissues
and prevent bleeding through coagulation around surgical
sites. APC is an example of an early use of argon gas in a
medical environment demonstrating an ability to effectively
limit tissue damage as seen in surgical cases including skin,
gastrointestinal, and neurosurgeries [73-77]. The positive
feedback from the use APC has allowed for speculation on
its aptitude as a suitable replacement for standardized co-
agulation techniques such as bipolar coagulation [78].

Conclusion
The development of argon in medical research has origi-
nated from its ability as a narcotic agent to a gas with
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potential protective properties. The greater availability
and low cost of argon provide a distinct advantage over
xenon while the difference in the pressure required to
exhibit narcotic properties allows for a variety of clin-
ical applications not available to xenon. Ischemic brain
injury models tend to show that argon is able to pro-
duce positive neuroprotective effects, though there
also exists possible negative effects of argon gas ther-
apies. Furthermore, the mechanisms in which argon
exerts its neuroprotective behavior are poorly under-
stood. Therefore, it can be evoked that an inadequate
amount of data exists to correctly assess argons neuro-
protective capability. Though studies investigating argon
gas use in clinical therapies have yet to be examined,
support for its use is evident through the combin-
ational report with tPA. In addition, argon has gar-
nered support as an organoprotectant and has shown
progress as a surgical tool. Though much is still un-
known about the effects and mechanisms of argon, a
number of promising signs have been given to its fu-
ture in the medical field with an emphasis found in its
neuroprotective ability.
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