De Keyser J, Sulter G, Luiten PG: Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing?. Trends Neurosci. 1999, 22 (12): 535-540. 10.1016/S0166-2236(99)01463-0.
Article
CAS
PubMed
Google Scholar
Ito H, et al: Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999, 43 (2): 153-162. 10.1034/j.1399-6576.1999.430206.x.
Article
CAS
PubMed
Google Scholar
Bilotta F, et al: Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth. 2013, 110 (Suppl 1): i113-i120. 10.1093/bja/aet059.
Article
CAS
PubMed
Google Scholar
Tator CH, et al: Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J Neurosurg Spine. 2012, 17 (1 Suppl): 157-229.
Article
PubMed
Google Scholar
Cavendish H: Experiments on Air. By Henry Cavendish, Esq. F. R. S. & S. A. Philos Trans R Soc Lond. 1784, 74: 119-153. 10.1098/rstl.1784.0014.
Article
Google Scholar
Rayleigh L, Ramsay W: Argon, a new constituent of the atmosphere. Proc R Soc Lond. 1894, 57 (340–346): 265-287.
Article
Google Scholar
Christe KO: Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun (Camb). 2013, 49 (41): 4588-4590. 10.1039/c3cc41387j.
Article
CAS
Google Scholar
Ruzicka J, et al: Biological effects of noble gases. Physiol Res. 2007, 56 (Suppl 1): S39-S44.
PubMed
Google Scholar
Trudell JR, Koblin DD, Eger EI: A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998, 87 (2): 411-418.
CAS
PubMed
Google Scholar
Quillin ML, et al: Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol. 2000, 302 (4): 955-977. 10.1006/jmbi.2000.4063.
Article
CAS
PubMed
Google Scholar
Gudmundsson JT, Lieberman MA: Ar + and Xe + velocities near the presheath-sheath boundary in an Ar/Xe discharge. Phys Rev Lett. 2011, 107 (4): 045002-
Article
CAS
PubMed
Google Scholar
Schiwietz G, et al: Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions. Phys Rev Lett. 2010, 105 (18): 187603-
Article
CAS
PubMed
Google Scholar
Kyrychenko A, Waluk J: Molecular dynamics simulations of matrix deposition. III. Site structure analysis for porphycene in argon and xenon. J Chem Phys. 2005, 123 (6): 64706-10.1063/1.1997128.
Article
PubMed
Google Scholar
Ma D, et al: Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth. 2002, 89 (5): 739-746. 10.1093/bja/89.5.739.
Article
CAS
PubMed
Google Scholar
Preckel B, et al: Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006, 105 (1): 187-197. 10.1097/00000542-200607000-00029.
Article
PubMed
Google Scholar
Derwall M, et al: Xenon: recent developments and future perspectives. Minerva Anestesiol. 2009, 75 (1–2): 37-45.
CAS
PubMed
Google Scholar
Franks NP, et al: How does xenon produce anaesthesia?. Nature. 1998, 396 (6709): 324-10.1038/24525.
Article
CAS
PubMed
Google Scholar
Jawad N, et al: Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett. 2009, 460 (3): 232-236. 10.1016/j.neulet.2009.05.069.
Article
CAS
PubMed
Google Scholar
Behnke AR, Thompson RM, Motley EP: The psychologic effects from breathing air at 4 atmospheres pressure. Am J Physiol Legacy Content. 1935, 112 (3): 554-558.
Google Scholar
Dudley SF: Some atmospheric hazards encountered in naval life: (united services section). Proc R Soc Med. 1935, 28 (9): 1283-1292.
PubMed Central
CAS
PubMed
Google Scholar
Haldane JBS: Human life and death at high pressures. Nature. 1941, 148: 458-460. 10.1038/148458a0.
Article
Google Scholar
Lawrence JH, et al: Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946, 105 (3): 197-204.
Article
PubMed Central
CAS
Google Scholar
Behnke AR, Yarbrough OD: Respiratory resistance, oil–water solubility, and mental effects of argon, compared with helium and nitrogen. Am J Physiol Legacy Content. 1939, 126 (2): 409-415.
CAS
Google Scholar
Abraini JH, et al: Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003, 96 (3): 746-749. table of contents
Article
CAS
PubMed
Google Scholar
Rostain JC, Balon N: Recent neurochemical basis of inert gas narcosis and pressure effects. Undersea Hyperb Med. 2006, 33 (3): 197-204.
CAS
PubMed
Google Scholar
Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature. 1994, 367 (6464): 607-614. 10.1038/367607a0.
Article
CAS
PubMed
Google Scholar
Jevtovic-Todorovic V, et al: Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998, 4 (4): 460-463. 10.1038/nm0498-460.
Article
CAS
PubMed
Google Scholar
Luo R, Partridge JG, Vicini S: Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics. Front Neural Circuits. 2013, 7: 186-
Article
PubMed Central
PubMed
Google Scholar
Ladepeche L, Dupuis JP, Groc L: Surface trafficking of NMDA receptors: Gathering from a partner to another. Semin Cell Dev Biol. 2013, doi: 10.1016/j.semcdb.2013.10.005
Google Scholar
Balon N, et al: Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats. Brain Res. 2002, 947 (2): 218-24. 10.1016/S0006-8993(02)02928-1.
Article
CAS
PubMed
Google Scholar
Koblin DD, et al: Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg. 1998, 87 (2): 419-24.
CAS
PubMed
Google Scholar
Fowler B, Ackles KN, Porlier G: Effects of inert gas narcosis on behavior–a critical review. Undersea Biomed Res. 1985, 12 (4): 369-402.
CAS
PubMed
Google Scholar
McConeghy KW, et al: A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs. 2012, 26 (7): 613-36. 10.2165/11634020-000000000-00000.
Article
CAS
PubMed
Google Scholar
Liu R, et al: Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res. 2012, 34 (4): 331-7. 10.1179/1743132812Y.0000000020.
Article
CAS
PubMed
Google Scholar
Russo R, et al: In search of new targets for retinal neuroprotection: is there a role for autophagy?. Curr Opin Pharmacol. 2013, 13 (1): 72-7. 10.1016/j.coph.2012.09.004.
Article
CAS
PubMed
Google Scholar
Zhang M, et al: Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013, 100: 30-47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neal JW, Gasque P: How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis?. J Neuropathol Exp Neurol. 2013, 72 (5): 370-85. 10.1097/NEN.0b013e3182909f2f.
Article
CAS
PubMed
Google Scholar
Lee JM, Zipfel GJ, Choi DW: The changing landscape of ischaemic brain injury mechanisms. Nature. 1999, 399 (6738 Suppl): A7-14.
Article
CAS
PubMed
Google Scholar
Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007, 87 (1): 179-97. 10.1016/j.pbb.2007.04.015.
Article
CAS
PubMed
Google Scholar
Strasser U, Fischer G: Protection from neuronal damage induced by combined oxygen and glucose deprivation in organotypic hippocampal cultures by glutamate receptor antagonists. Brain Res. 1995, 687 (1–2): 167-74.
Article
CAS
PubMed
Google Scholar
Prins M, et al: The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013, 6 (6): 1307-1315. 10.1242/dmm.011585.
Article
PubMed Central
CAS
PubMed
Google Scholar
Namjoshi DR, et al: Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech. 2013, 6 (6): 1325-1338. 10.1242/dmm.011320.
Article
PubMed Central
PubMed
Google Scholar
Liu F, McCullough LD: Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. 2011, 2011: 464701-
PubMed Central
PubMed
Google Scholar
Loetscher PD, et al: Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care. 2009, 13 (6): R206-10.1186/cc8214.
Article
PubMed Central
PubMed
Google Scholar
Harris K, et al: Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-D-Aspartate Receptor Glycine Site. Anesthesiology. 2013, 119 (5): 1137-1148. 10.1097/ALN.0b013e3182a2a265.
Article
CAS
PubMed
Google Scholar
Ryang YM, et al: Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011, 39 (6): 1448-53. 10.1097/CCM.0b013e31821209be.
Article
CAS
PubMed
Google Scholar
Zhuang L, et al: The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med. 2012, 40 (6): 1724-30. 10.1097/CCM.0b013e3182452164.
Article
CAS
PubMed
Google Scholar
Neumar RW, et al: Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008, 118 (23): 2452-83. 10.1161/CIRCULATIONAHA.108.190652.
Article
PubMed
Google Scholar
Brucken A, et al: Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013, 110 (suppl 1): i106-i112. 10.1093/bja/aes509.
Article
PubMed
Google Scholar
Ristagno G, et al: Post-resuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2013, 41 (1): 72-78.
Article
Google Scholar
David HN, et al: Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One. 2012, 7 (2): e30934-10.1371/journal.pone.0030934.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang XR, et al: Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons. Sheng Li Xue Bao. 2012, 64 (6): 609-16.
CAS
PubMed
Google Scholar
Jin J, et al: The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci Lett. 2013, 539: 11-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ali Shah S, et al: Anthocyanins protect against ethanol-induced neuronal apoptosis via GABA receptors intracellular signaling in prenatal Rat hippocampal neurons. Mol Neurobiol. 2013, 48 (1): 257-269. 10.1007/s12035-013-8458-y.
Article
CAS
PubMed
Google Scholar
Yang L, Sonner JM: Anesthetic-like modulation of receptor function by surfactants: a test of the interfacial theory of anesthesia. Anesth Analg. 2008, 107 (3): 868-74. 10.1213/ane.0b013e31817ee500.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mihic SJ, et al: Sites of alcohol and volatile anaesthetic action on GABA (A) and glycine receptors. Nature. 1997, 389 (6649): 385-9. 10.1038/38738.
Article
CAS
PubMed
Google Scholar
Randall RD, Thayer SA: Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci. 1992, 12 (5): 1882-95.
CAS
PubMed
Google Scholar
Choi DW, Koh JY, Peters S: Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988, 8 (1): 185-96.
CAS
PubMed
Google Scholar
Yeganeh F, et al: Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study. J Mol Neurosci. 2013, 50 (3): 551-7. 10.1007/s12031-013-9996-5.
Article
CAS
PubMed
Google Scholar
Lipton P: Ischemic cell death in brain neurons. Physiol Rev. 1999, 79 (4): 1431-568.
CAS
PubMed
Google Scholar
Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22 (9): 391-7. 10.1016/S0166-2236(99)01401-0.
Article
CAS
PubMed
Google Scholar
Panaretakis T, et al: Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem. 2002, 277 (46): 44317-26. 10.1074/jbc.M205273200.
Article
CAS
PubMed
Google Scholar
Li Y, Han F, Shi Y: Increased neuronal apoptosis in medial prefrontal cortex is accompanied with changes of Bcl-2 and bax in a rat model of post-traumatic stress disorder. J Mol Neurosci. 2013, 51 (1): 127-137. 10.1007/s12031-013-9965-z.
Article
CAS
PubMed
Google Scholar
Costa C, et al: Coactivation of GABA (A) and GABA (B) receptor results in neuroprotection during in vitro ischemia. Stroke. 2004, 35 (2): 596-600. 10.1161/01.STR.0000113691.32026.06.
Article
CAS
PubMed
Google Scholar
Wei XW, et al: Neuroprotection of co-activation of GABA receptors by preventing caspase-3 denitrosylation in KA-induced seizures. Brain Res Bull. 2012, 88 (6): 617-23. 10.1016/j.brainresbull.2012.05.008.
Article
CAS
PubMed
Google Scholar
Dai J, et al: Activations of GABAergic signaling, HSP70 and MAPK cascades are involved in baicalin’s neuroprotection against gerbil global ischemia/reperfusion injury. Brain Res Bull. 2013, 90: 1-9.
Article
CAS
PubMed
Google Scholar
Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010, 277 (1): 22-29. 10.1111/j.1742-4658.2009.07367.x.
Article
CAS
PubMed
Google Scholar
Fahlenkamp AV, et al: The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012, 674 (2–3): 104-11.
Article
CAS
PubMed
Google Scholar
David HN, et al: Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol. 2013, 386 (1): 91-5. 10.1007/s00210-012-0809-0.
Article
CAS
PubMed
Google Scholar
Irani Y, et al: Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011, 1 (1): 272-82. 10.1159/000335197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pagel PS, et al: Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg. 2007, 105 (3): 562-9. 10.1213/01.ane.0000278083.31991.36.
Article
CAS
PubMed
Google Scholar
Spaggiari S, et al: Antiapoptotic activity of argon and xenon. Cell Cycle. 2013, 12 (16): 2636-42. 10.4161/cc.25650.
Article
PubMed Central
PubMed
Google Scholar
Miyazawa T, et al: Early experiences of haemostasis on brain tumour surgery with Argon Plasma Coagulation (APC). Acta Neurochir (Wien). 2000, 142 (11): 1247-51. 10.1007/s007010070021.
Article
CAS
Google Scholar
Smythe A, et al: The effect of argon plasma coagulation ablation on esophageal motility and chemoreceptor sensitivity in Barrett’s esophagus patients. Dis Esophagus. 2010, 23 (6): 445-50. 10.1111/j.1442-2050.2010.01047.x.
Article
CAS
PubMed
Google Scholar
Goulet CJ, et al: In vivo evaluation of argon plasma coagulation in a porcine model. Gastrointest Endosc. 2007, 65 (3): 457-62. 10.1016/j.gie.2006.09.005.
Article
PubMed
Google Scholar
Min BH, et al: Feasibility and efficacy of argon plasma coagulation for early esophageal squamous cell neoplasia. Endoscopy. 2013, 45 (7): 575-8.
Article
PubMed
Google Scholar
Ahn JY, et al: Clinical outcomes of argon plasma coagulation for the treatment of gastric neoplasm. Surg Endosc. 2013, 27 (9): 3146-3152. 10.1007/s00464-013-2868-9.
Article
PubMed
Google Scholar
Riegel T, et al: Comparative experimental study of argon plasma and bipolar coagulation techniques. Acta Neurochir (Wien). 2006, 148 (7): 757-62. 10.1007/s00701-006-0770-0. discussion 762–3
Article
CAS
Google Scholar