Skip to main content

Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles -

Abstract

Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.

Introduction

It has been 8 years since Ohsawa and colleagues reported the astonishing therapeutic effects of molecular hydrogen on a rat model of cerebral infarction in Nature Medicine in 2007 [1]. Inhalation of 1–4 % hydrogen gas markedly reduced the sizes of cerebral infarction in rats. They also demonstrated that hydrogen specifically scavenges hydroxyl radical and peroxynitrite but not hydrogen peroxide or superoxide. Their paper ignited interest in the effect of molecular hydrogen in various diseases and has been cited 533 times as of July 2015. Similarly, the number of original articles demonstrating the effect of molecular hydrogen adds up to more than 300. This review summarizes research articles published in these past 8 years and addresses possible molecular mechanisms underlying the effects of hydrogen.

Molecular hydrogen research before 2007

Even before the publication by Ohsawa and colleagues in 2007 [1], biological effects of molecular hydrogen had been investigated in a small scale, as shown below. Dole and colleagues first reported the hydrogen effect in Science in 1975 [2]. They placed nude mice carrying squamous cell carcinoma in a chamber with 2.5 % oxygen and 97.5 % hydrogen under 8-atmospheric pressure and observed prominent reduction in the size of the tumors. A similar effect of hyperbaric hydrogen on leukemia was reported in 1978 [3]. Hydreliox, which contained 49 % hydrogen, 50 % helium, and 1 % oxygen, was reported to be effective to prevent decompression sickness and nitrogen narcosis for divers working below 500 meters under sea level [4]. An anti-inflammatory effect of hyperbaric hydrogen on a mouse model of schistosomiasis-associated chronic liver inflammation was also reported in 2001 [5]. Hyperbaric hydrogen may be effective for some diseases, but only a limited number of studies have been published. The difference between hyperbaric and normobaric hydrogen has not been directly compared to date.

Following a small number of studies with hyperbaric hydrogen, the effect of electrolytically alkaline water has been reported. Shirahata and colleagues hypothesized that the hydrogen atom, which they called active hydrogen, is generated in electrolysis and proposed that active hydrogen scavenges reactive oxygen species (ROS) [6]. Although it is unlikely that atomic hydrogen is able to exist for a substantial time in our bodies, molecular hydrogen does exist in electrolyzed water and the effects of electrolyzed water have been reported thereafter. Li and colleagues reported that electrolyzed water scavenged ROS and protected a hamster pancreatic beta cell line from alloxan-induced cell damage [7]. Similarly, reduced hemodialysis solution produced by an electrolysis device (Nihon Trim Co. Ltd.) ameliorated oxidative stress in hemodialysis patients [8]. In 2005, researchers in Tohoku University Graduate School of Medicine and Nihon Trim started cooperative clinical studies and established the Association of Electrolyzed Water-Hemodialysis Study Group in 2008. According to personal communications with this group, they now believe that the effects of electrolyzed water are likely due to dissolved hydrogen molecules.

In 2005, Yanagihara and colleagues at Miz Co. Ltd. reported that hydrogen-rich neutral water that was produced with their unique electrolysis device reduced oxidative stress in rats [9]. This was a pioneering work, because they explicitly proved that molecular hydrogen but not alkaline in the electrolyzed alkaline water exerts therapeutic effects.

Molecular hydrogen research in and after year 2007

As stated in the introduction, the Nature Medicine paper in 2007 [1] spurred interest in hydrogen research. Figure 1 shows 321 original articles up to June 2015 in the MEDLINE database, which demonstrate the effects of molecular hydrogen on disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants. Most studies were conducted in Japan, China, and the USA, with a predominance of China since 2010 (Fig. 1A). About three-quarters of the articles show the effects in mice and rats (Fig. 1B), but the number of human studies is increasing every year (1 article each in 2008–2009; 2 in 2010; 3 in 2011; 5 in 2012; 9 in 2013; 6 in 2014; and 6 in 2015). In addition, the effects of hydrogen have been reported in plants in 13 articles, which suggest a wide range of effects over various species not restricted to mammals. The effects of molecular hydrogen on plants may warrant application of hydrogen to increase agricultural production. Modalities of hydrogen administration are shown in Fig. 1C. Hydrogen-rich saline, which is almost exclusively used in China, dominates over the others. Hydrogenized saline is administered either by intraperitoneal injection or drip infusion. Hydrogen water is mostly given ad libitum. Hydrogen gas is usually given by inhaling 1–4 % hydrogen gas, which is below the explosion level (4 %). There is a single report, in which hydrogen gas was injected intraperitoneally [10].

Fig. 1
figure 1

Profiles of 321 original articles up to June 2015 showing therapeutic effects of molecular hydrogen. a Temporal profile of countries where the studies are reported from 2007 to June 2015. b Biological species used in the studies. c Modalities of hydrogen administration to model animals, humans, and plants

Among the various routes of hydrogen administration shown in Fig. 1C, the best method still remains uncertain. This is partly because only a few reports have addressed the difference of effects among administration methods. We previously showed that drinking hydrogen water, but not continuous hydrogen gas exposure, prevented development of 6-hydorxydopamine-induced Parkinson’s disease in rats [11]. In addition, we recently showed that continuous exposure to hydrogen gas and ad libitum per os administration of hydrogen water modulated signaling pathways and gene expressions in different manners in mice [12]. We demonstrated that hydrogen-responsive genes are divided into four groups: genes that respond favorably to hydrogen gas, those that respond exclusively to hydrogen water, those that respond to both hydrogen gas and water, and those that respond only to the simultaneous administration of gas and water (Fig. 2). As hydrogen gas and water increase the hydrogen concentrations in the rodent body to a similar level [12], the difference in the organs exposed to a high concentration of hydrogen, the rise time of hydrogen concentration, and/or the area under the curve of hydrogen concentration may account for the difference in the modulated genes. On the other hand, a collation of hydrogen reports indicate that a similar degree of effects can be observed with different modalities of administration. For example, the marked effect of hydrogen on a mouse model of LPS-induced acute lung injury has been reported by four different groups with three different modalities: hydrogen gas [13, 14], hydrogen water [15], and hydrogen-rich saline [14, 16]. Similarly, the dramatic effect of hydrogen on animal models of acute myocardial infarction has been reported by eight different groups with two different modalities: hydrogen gas [1720] and hydrogen-rich saline [2124]. To clarify the difference of hydrogen’s effects with different modalities of administration, each research group should scrutinize the difference of the effects between hydrogen gas, hydrogen water, and hydrogen-rich saline. This would uncover the best modality for each disease model, if any, and also the optimal hydrogen dose.

Fig. 2
figure 2

Four groups of genes that show different responses to hydrogen gas and/or water [12] . a Bcl6 responds to hydrogen gas more than hydrogen water. b G6pc responds only to hydrogen water. c Wee1 responds to both hydrogen water and gas. d Egr1 responds only to simultaneous administration of hydrogen gas and water

Table 1 summarizes disease categories for which the effects of hydrogen have been reported. Ohsawa and colleagues reported the hydrogen effect in cerebral infarction [1] and many subsequent studies also showed its effect in ischemia-reperfusion injuries including organ transplantations. Following the initial report by Ohsawa and colleagues, the specific hydroxyl radical scavenging effect of hydrogen has been repeatedly proposed in oxidative stress-mediated diseases including inflammatory diseases and metabolic diseases.

Table 1 Disease categories for which hydrogen exhibited beneficial effects

Table 2 shows the details of organs and diseases for which the effects of hydrogen have been reported. Table 2 is an update of our previous review article in 2012 [25]. We have now classified the organs and diseases into 31 categories and showed the effects in 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants. Hydrogen is effective in essentially all organs, as well as in plants.

Table 2 Disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants (321 original articles published in English) for which the effects of hydrogen have been reported from 2007 to June 2015

Molecular mechanisms of the effects of hydrogen

Collation of the 321 original articles reveals that most communications address the anti-oxidative stress, anti-inflammatory, and anti-apoptotic effects. Specific scavenging activities of hydroxyl radical and peroxynitrite, however, cannot fully explain the anti-inflammatory and anti-apoptotic effects, which should involve a number of fine-tuned signaling pathways. We have shown that hydrogen suppresses signaling pathways in allergies [26] and inflammation [27] without directly scavenging reactive oxygen/nitrogen species. Signaling molecules that are modulated by hydrogen include Lyn [26, 28], Ras [29], MEK [29, 30], ERK [12, 24, 2937], p38 [12, 16, 24, 27, 30, 32, 33, 3541], JNK [13, 24, 27, 30, 32, 33, 3538, 40, 4247], ASK1 [27, 46], Akt [12, 29, 36, 37, 48, 49], GTP-Rac1 [36], iNOS [27, 34, 36, 5052], Nox1 [36], NF-κB p65 or NF-κB [12, 14, 27, 3538, 40, 41, 43, 49, 5375], IκBα [27, 40, 41, 54, 60, 62, 69, 73, 76], STAT3 [65, 77, 78], NFATc1 [12, 36, 78], c-Fos [36], GSK-3β [48, 79], ROCK [80]. Activities and expressions of these molecules are modified by hydrogen. Master regulator(s) that drive these modifications remain to be elucidated.

The anti-oxidative stress effect of hydrogen was first reported to be conferred by direct elimination of hydroxyl radical and peroxynitrite. Subsequent studies indicate that hydrogen activates the Nrf2-Keap1 system. Hydrogen activates Nrf2 [36, 8187] and its downstream heme oxygenase-1 (HO-1) [36, 51, 52, 65, 71, 81, 82, 8493]. Kawamura and colleagues reported that hydrogen did not mitigate hyperoxic lung injury in Nrf2-knockout mice [82]. Similarly, Ohsawa and colleagues reported that hydrogen enhanced mitochondrial functions and induced nuclear translocation of Nrf2 at the Symposium of Medical Molecular Hydrogen in 2012 and 2013. They proposed that hydrogen induces an adaptive response against oxidative stress, which is also known as a hormesis effect. These studies indicate that the effect of hydrogen is mediated by Nrf2, but the mechanisms of how Nrf2 is activated by hydrogen remain to be solved.

Another interesting mechanism is that hydrogen modulates miRNA expressions [64, 94]. Hydrogen regulates expressions of miR-9, miR-21, and miR-199, and modifies expressions of IKK-β, NF-κB, and PDCD4 in LPS-activated retinal microglia cells [64]. Similarly, analysis of miRNA profiles of hippocampal neurons during I/R injury revealed that hydrogen inhibits I/R-induced expression of the miR-200 family by reducing ROS production, which has led to suppression of cell death [94]. However, modulation of miRNA expression cannot solely explain all the biological effects mediated by hydrogen. In addition, mechanisms underlying modulated miRNA expressions remain to be elucidated.

Matsumoto and colleagues reported that oral intake of hydrogen water increased gastric expression and secretion of ghrelin and that the neuroprotective effect of hydrogen water was abolished by the ghrelin receptor-antagonist and by the ghrelin secretion-antagonist [95]. As stated above, we have shown that hydrogen water, but not hydrogen gas, prevented development of Parkinson’s disease in a rat model [11]. Prominent effect of oral hydrogen intake rather than hydrogen gas inhalation may be partly accounted for by gastric induction of ghrelin.

Recently, Ohta and colleagues showed at the 5th Symposium of Medical Molecular Hydrogen at Nagoya, Japan in 2015 that hydrogen influences a free radical chain reaction of unsaturated fatty acid on cell membrane and modifies its lipid peroxidation process. Furthermore, they demonstrated that air-oxidized phospholipid that was produced either in the presence or absence of hydrogen in vitro, gives rise to different intracellular signaling and gene expression profiles when added to the culture medium. They also showed that this aberrant oxidization of phospholipid was observed with a low concentration of hydrogen (at least 1.3 %), suggesting that the biological effects of hydrogen could be explained by the aberrant oxidation of phospholipid under hydrogen exposure. Among the many molecules that are altered by hydrogen, most are predicted to be passengers (downstream regulators) that are modulated secondarily to a change in a driver (master regulator). The best way to identify the master regulator is to prove the effect of hydrogen in an in vitro system. Although, to our knowledge, the study on lipid peroxidation has not yet been published, the free radical chain reaction for lipid peroxidation might be the second master regulator of hydrogen next to the radical scavenging effect. We are also analyzing other novel molecules as possible master regulators of hydrogen (in preparation). Taken together, hydrogen is likely to have multiple master regulators, which drive a diverse array of downstream regulators and achieve beneficial biological effects against oxidative stress, inflammation, apoptosis, and dysmetabolism to name a few (Fig. 3).

Fig. 3
figure 3

Schematic summary of molecular mechanisms of hydrogen

These studies all point to the notion that hydrogen modulates intracellular signal transduction systems and regulates the downstream gene expressions to mitigate disease processes. In general, biologically active substances that modulate signaling molecules have both beneficial and noxious effects on our bodies. Hydrogen may also have undisclosed toxic effects, although none have been reported to date to the best of our knowledge. Understanding the exact molecular mechanisms of the effects of hydrogen will elucidate its master regulator(s) and clarify the pros and cons of hydrogen therapy, which will also potentially lead to the development of another therapeutic modality to modulate the master regulator(s). We summarized in Table 3 original articles that addressed biological effects and in vivo kinetics of hydrogen, which were not directly relevant to disease models or human diseases. It is essential to elucidate detailed pharmacokinetics of hydrogen in vivo from the viewpoint of clinical application of hydrogen, although we have accumulated vast knowledge about the effects and not the kinetics of hydrogen in disease models and human diseases. Through these analyses, promising outcomes are expected for more effective administration regimen of hydrogen therapy.

Table 3 Original articles showing physiological effects and in vivo kinetics of hydrogen

Clinical studies of molecular hydrogen

As stated in the introduction, the number of clinical trials has been increasing since 2011. About half of human studies have been conducted in Japan. Dependable studies recruiting more than ten patients or employing double-blind studies are summarized in Table 4.

Table 4 Clinical trials published as of June, 2015

Features shared in these clinical studies are that hydrogen exhibits statistically significant effects in patients but the effects are usually not as conspicuous as those observed in rodent models. These can be accounted for by i) the difference in species, ii) technical difficulty in preparing a high concentration of hydrogen water every day for the patients, and iii) the difference between acute and chronic diseases. Further large-scale and long-term clinical studies are expected to prove the effects of hydrogen in humans.

Table 5 shows clinical studies currently registered in Japan. Researchers in Juntendo University have started a large-scale clinical trial of Parkinson’s disease after they have shown the effects of molecular hydrogen in a small number of patients in a short duration [96]. Being prompted by the prominent effects of hydrogen for mouse models with ischemia reperfusion injuries, clinical trials for acute post cardiac arrest syndrome and myocardial infarction have started at Keio University. Similarly, a clinical trial for cerebral infarction has started at the National Defense Medical College.

Table 5 Clinical trials registered in Japan as of June, 2015

Conclusions

The number of original articles showing the effects of hydrogen are increasing yearly after 2007, and an extensive review of these articles are getting more and more difficult. Some of these articles, however, are a repetition of previous studies with insignificant novel findings. We suppose that almost all disease models and almost all modalities by which hydrogen is administered have been already examined. Large-scale controlled human studies and elucidation of molecular mechanisms underlying the effects of hydrogen are the next steps that must be pursued.

A dose–response effect of hydrogen is observed in drinking hydrogen-rich water [94, 97]. A similar dose–response effect is also observed in inhaled hydrogen gas [1, 17, 98]. However, when hydrogen concentrations in drinking water and in inhaled gas are compared, there is no dose–response effect. Hydrogen-rich water generally shows a more prominent effect than hydrogen gas, although the amount of hydrogen taken up by hydrogen water is ~100 times less than that given by hydrogen gas [11]. Gastric secretion of ghrelin may partly account for this difference [95]. Another factor that accounts for the effects of hydrogen is the temporal profile of hydrogen administration. Intermittent inhalation, but not continuous inhalation, of hydrogen is protective against a rat model of Parkinson’s disease, which is against a dose-responsiveness of hydrogen [11]. The prominent effects of molecular hydrogen in a variety of disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants have been disclosed in these 8 years, but unsolved conundrums still challenge us.

References

  1. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–94. doi:10.1038/nm1577.

    Article  CAS  PubMed  Google Scholar 

  2. Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. 1975;190(4210):152–4.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts BJ, Fife WP, Corbett TH, Schabel Jr FM. Response of five established solid transplantable mouse tumors and one mouse leukemia to hyperbaric hydrogen. Cancer Treat Rep. 1978;62(7):1077–9.

    CAS  PubMed  Google Scholar 

  4. Abraini JH, Gardette-Chauffour MC, Martinez E, Rostain JC, Lemaire C. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J Appl Physiol. 1994;76(3):1113–8.

    CAS  PubMed  Google Scholar 

  5. Gharib B, Hanna S, Abdallahi OM, Lepidi H, Gardette B, De Reggi M. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C R Acad Sci III. 2001;324(8):719–24.

    Article  CAS  PubMed  Google Scholar 

  6. Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, et al. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 1997;234(1):269–74. doi:10.1006/bbrc.1997.6622.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Nishimura T, Teruya K, Maki T, Komatsu T, Hamasaki T, et al. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species. Cytotechnology. 2002;40(1–3):139–49. doi:10.1023/A:1023936421448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Huang KC, Yang CC, Lee KT, Chien CT. Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water. Kidney Int. 2003;64(2):704–14. doi:10.1046/j.1523-1755.2003.00118.x.

    Article  CAS  PubMed  Google Scholar 

  9. Yanagihara T, Arai K, Miyamae K, Sato B, Shudo T, Yamada M, et al. Electrolyzed hydrogen-saturated water for drinking use elicits an antioxidative effect: a feeding test with rats. Biosci Biotechnol Biochem. 2005;69(10):1985–7.

    Article  CAS  PubMed  Google Scholar 

  10. Huang G, Zhou J, Zhan W, Xiong Y, Hu C, Li X, et al. The neuroprotective effects of intraperitoneal injection of hydrogen in rabbits with cardiac arrest. Resuscitation. 2013;84(5):690–5. doi:10.1016/j.resuscitation.2012.10.018.

    Article  CAS  PubMed  Google Scholar 

  11. Ito M, Hirayama M, Yamai K, Goto S, Ito M, Ichihara M, et al. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res. 2012;2(1):15. doi:10.1186/2045-9912-2-15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sobue S, Yamai K, Ito M, Ohno K, Ito M, Iwamoto T, et al. Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol Cell Biochem. 2015;403(1–2):231–41. doi:10.1007/s11010-015-2353-y.

    Article  CAS  PubMed  Google Scholar 

  13. Qiu X, Li H, Tang H, Jin Y, Li W, Sun Y, et al. Hydrogen inhalation ameliorates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol. 2011;11(12):2130–7. doi:10.1016/j.intimp.2011.09.007.

    Article  CAS  PubMed  Google Scholar 

  14. Xie K, Yu Y, Huang Y, Zheng L, Li J, Chen H, et al. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock. 2012;37(5):548–55. doi:10.1097/SHK.0b013e31824ddc81.

    CAS  PubMed  Google Scholar 

  15. Hattori Y, Kotani T, Tsuda H, Mano Y, Tu L, Li H, et al. Maternal molecular hydrogen treatment attenuates lipopolysaccharide-induced rat fetal lung injury. Free Radic Res. 2015;49:1026–37. doi:10.3109/10715762.2015.1038257.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Liu Y, Zhang J. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. J Surg Res. 2015;198:41–9. doi:10.1016/j.jss.2015.04.055.

    Article  CAS  PubMed  Google Scholar 

  17. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008;373(1):30–5. doi:10.1016/j.bbrc.2008.05.165.

    Article  CAS  PubMed  Google Scholar 

  18. Sakai K, Cho S, Shibata I, Yoshitomi O, Maekawa T, Sumikawa K. Inhalation of hydrogen gas protects against myocardial stunning and infarction in swine. Scand Cardiovasc J. 2012;46(3):183–9. doi:10.3109/14017431.2012.659676.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida A, Asanuma H, Sasaki H, Sanada S, Yamazaki S, Asano Y, et al. H(2) mediates cardioprotection via involvements of K(ATP) channels and permeability transition pores of mitochondria in dogs. Cardiovasc Drugs Ther. 2012;26(3):217–26. doi:10.1007/s10557-012-6381-5.

    Article  CAS  PubMed  Google Scholar 

  20. Shinbo T, Kokubo K, Sato Y, Hagiri S, Hataishi R, Hirose M, et al. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am J Physiol Heart Circ Physiol. 2013;305(4):H542–50. doi:10.1152/ajpheart.00844.2012.

    Article  CAS  PubMed  Google Scholar 

  21. Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH, et al. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood). 2009;234(10):1212–9. doi:10.3181/0812-RM-349.

    Article  CAS  Google Scholar 

  22. Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol. 2011;148(1):91–5. doi:10.1016/j.ijcard.2010.08.058.

    Article  PubMed  Google Scholar 

  23. Jing L, Wang Y, Zhao XM, Zhao B, Han JJ, Qin SC, et al. Cardioprotective Effect of Hydrogen-rich Saline on Isoproterenol-induced Myocardial Infarction in Rats. Heart Lung Circ. 2015;24(6):602–10. doi:10.1016/j.hlc.2014.11.018.

    Article  PubMed  Google Scholar 

  24. Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L, et al. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep. 2015;5:9858. doi:10.1038/srep09858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ohno K, Ito M, Ichihara M, Ito M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev. 2012;2012:353152. doi:10.1155/2012/353152.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Itoh T, Fujita Y, Ito M, Masuda A, Ohno K, Ichihara M, et al. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009;389(4):651–6. doi:10.1016/j.bbrc.2009.09.047.

    Article  CAS  PubMed  Google Scholar 

  27. Itoh T, Hamada N, Terazawa R, Ito M, Ohno K, Ichihara M, et al. Molecular hydrogen inhibits lipopolysaccharide/interferon gamma-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem Biophys Res Commun. 2011;411(1):143–9. doi:10.1016/j.bbrc.2011.06.116.

    Article  CAS  PubMed  Google Scholar 

  28. Manaenko A, Lekic T, Ma Q, Zhang JH, Tang J. Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice. Crit Care Med. 2013;41(5):1266–75. doi:10.1097/CCM.0b013e31827711c9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chen Y, Jiang J, Miao H, Chen X, Sun X, Li Y. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int J Mol Med. 2013;31(3):597–606. doi:10.3892/ijmm.2013.1256.

    CAS  PubMed  Google Scholar 

  30. Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int. 2010;77(2):101–9. doi:10.1038/ki.2009.421.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Shen WF, Sun HY, Fan DF, Nakao A, Cai JM, et al. Hydrogen-rich saline protects against liver injury in rats with obstructive jaundice. Liver Int. 2010;30(7):958–68. doi:10.1111/j.1478-3231.2010.02254.x.

    Article  CAS  PubMed  Google Scholar 

  32. Kasuyama K, Tomofuji T, Ekuni D, Tamaki N, Azuma T, Irie K, et al. Hydrogen-rich water attenuates experimental periodontitis in a rat model. J Clin Periodontol. 2011;38(12):1085–90. doi:10.1111/j.1600-051X.2011.01801.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka Y, Shigemura N, Kawamura T, Noda K, Isse K, Stolz DB, et al. Profiling molecular changes induced by hydrogen treatment of lung allografts prior to procurement. Biochem Biophys Res Commun. 2012;425(4):873–9. doi:10.1016/j.bbrc.2012.08.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sun Y, Shuang F, Chen DM, Zhou RB. Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats. Osteoporos Int. 2013;24(3):969–78. doi:10.1007/s00198-012-2028-4.

    Article  CAS  PubMed  Google Scholar 

  35. Xu XF, Zhang J. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats. Physiol Res. 2013;62(4):395–403.

    CAS  PubMed  Google Scholar 

  36. Li DZ, Zhang QX, Dong XX, Li HD, Ma X. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab. 2014;32(5):494–504. doi:10.1007/s00774-013-0530-1.

    Article  CAS  PubMed  Google Scholar 

  37. Guo SX, Fang Q, You CG, Jin YY, Wang XG, Hu XL, et al. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J Transl Med. 2015;13:183. doi:10.1186/s12967-015-0548-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Liu X, Chen Z, Mao N, Xie Y. The protective of hydrogen on stress-induced gastric ulceration. Int Immunopharmacol. 2012;13(2):197–203. doi:10.1016/j.intimp.2012.04.004.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Q, Chen P, Zhou S, Yan X, Zhang J, Sun X, et al. Hydrogen-rich saline attenuated neuropathic pain by reducing oxidative stress. Can J Neurol Sci. 2013;40(6):857–63.

    Article  PubMed  Google Scholar 

  40. Wu F, Qiu Y, Ye G, Luo H, Jiang J, Yu F, et al. Treatment with hydrogen molecule attenuates cardiac dysfunction in streptozotocin-induced diabetic mice. Cardiovasc Pathol. 2015;24:294–303. doi:10.1016/j.carpath.2015.04.008.

    Article  CAS  PubMed  Google Scholar 

  41. Zhai Y, Zhou X, Dai Q, Fan Y, Huang X. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced sepsis in rats. Exp Mol Pathol. 2015;98(2):268–76. doi:10.1016/j.yexmp.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  42. Sun H, Chen L, Zhou W, Hu L, Li L, Tu Q, et al. The protective role of hydrogen-rich saline in experimental liver injury in mice. J Hepatol. 2011;54(3):471–80. doi:10.1016/j.jhep.2010.08.011.

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Li J, Liu Q, Yang R, Zhang JH, Cao YP, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappaB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett. 2011;491(2):127–32. doi:10.1016/j.neulet.2011.01.022.

    Article  CAS  PubMed  Google Scholar 

  44. Iio A, Ito M, Itoh T, Terazawa R, Fujita Y, Nozawa Y, et al. Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Med Gas Res. 2013;3(1):6. doi:10.1186/2045-9912-3-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Shin MH, Park R, Nojima H, Kim HC, Kim YK, Chung JH. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo. PLoS One. 2013;8(4):e61696. doi:10.1371/journal.pone.0061696.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Liu YQ, Liu YF, Ma XM, Xiao YD, Wang YB, Zhang MZ, et al. Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regulating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J Plast Reconstr Aesthet Surg. 2015;68(7):e147–56. doi:10.1016/j.bjps.2015.03.001.

    Article  PubMed  Google Scholar 

  47. Zhang JY, Song SD, Pang Q, Zhang RY, Wan Y, Yuan DW, et al. Hydrogen-rich water protects against acetaminophen-induced hepatotoxicity in mice. World J Gastroenterol. 2015;21(14):4195–209. doi:10.3748/wjg.v21.i14.4195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hong Y, Shao A, Wang J, Chen S, Wu H, McBride DW, et al. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway. PLoS One. 2014;9(4):e96212. doi:10.1371/journal.pone.0096212.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Guo SX, Jin YY, Fang Q, You CG, Wang XG, Hu XL, et al. Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats. PLoS One. 2015;10(4):e0124897. doi:10.1371/journal.pone.0124897.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Wei L, Ge L, Qin S, Shi Y, Du C, Du H, et al. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Exp Eye Res. 2012;94(1):117–27. doi:10.1016/j.exer.2011.11.016.

    Article  CAS  PubMed  Google Scholar 

  51. Abe T, Li XK, Yazawa K, Hatayama N, Xie L, Sato B, et al. Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury. Transplantation. 2012;94(1):14–21. doi:10.1097/TP.0b013e318255f8be.

    Article  CAS  PubMed  Google Scholar 

  52. Noda K, Shigemura N, Tanaka Y, Kawamura T, Hyun Lim S, Kokubo K, et al. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J Heart Lung Transplant. 2013;32(2):241–50. doi:10.1016/j.healun.2012.11.004.

    Article  PubMed  Google Scholar 

  53. Huang CS, Kawamura T, Peng X, Tochigi N, Shigemura N, Billiar TR, et al. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem Biophys Res Commun. 2011;408(2):253–8. doi:10.1016/j.bbrc.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

  54. Song G, Tian H, Liu J, Zhang H, Sun X, Qin S. H2 inhibits TNF-alpha-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor kappaB activation in endothelial cells. Biotechnol Lett. 2011;33(9):1715–22. doi:10.1007/s10529-011-0630-8.

    Article  CAS  PubMed  Google Scholar 

  55. Kubota M, Shimmura S, Kubota S, Miyashita H, Kato N, Noda K, et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Invest Ophthalmol Vis Sci. 2011;52(1):427–33. doi:10.1167/iovs.10-6167.

    Article  CAS  PubMed  Google Scholar 

  56. Ji Q, Hui K, Zhang L, Sun X, Li W, Duan M. The effect of hydrogen-rich saline on the brain of rats with transient ischemia. J Surg Res. 2011;168(1):e95–101. doi:10.1016/j.jss.2011.01.057.

    Article  CAS  PubMed  Google Scholar 

  57. Shen L, Wang J, Liu K, Wang C, Wang C, Wu H, et al. Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest. Neurochem Res. 2011;36(8):1501–11. doi:10.1007/s11064-011-0476-4.

    Article  CAS  PubMed  Google Scholar 

  58. Qin ZX, Yu P, Qian DH, Song MB, Tan H, Yu Y, et al. Hydrogen-rich saline prevents neointima formation after carotid balloon injury by suppressing ROS and the TNF-alpha/NF-kappaB pathway. Atherosclerosis. 2012;220(2):343–50. doi:10.1016/j.atherosclerosis.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  59. Song G, Tian H, Qin S, Sun X, Yao S, Zong C, et al. Hydrogen decreases athero-susceptibility in apolipoprotein B-containing lipoproteins and aorta of apolipoprotein E knockout mice. Atherosclerosis. 2012;221(1):55–65. doi:10.1016/j.atherosclerosis.2011.11.043.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng H, Yu YS. Chronic hydrogen-rich saline treatment attenuates vascular dysfunction in spontaneous hypertensive rats. Biochem Pharmacol. 2012;83(9):1269–77. doi:10.1016/j.bcp.2012.01.031.

    Article  CAS  PubMed  Google Scholar 

  61. Hong Y, Guo S, Chen S, Sun C, Zhang J, Sun X. Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats. J Neurosci Res. 2012;90(8):1670–80. doi:10.1002/jnr.22739.

    Article  CAS  PubMed  Google Scholar 

  62. Guo JD, Li L, Shi YM, Wang HD, Hou SX. Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol. 2013;168(6):1412–20. doi:10.1111/bph.12036.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Xiao M, Zhu T, Wang T, Wen FQ. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-kappaB in a murine model of asthma. Eur Rev Med Pharmacol Sci. 2013;17(8):1033–43.

    CAS  PubMed  Google Scholar 

  64. Liu GD, Zhang H, Wang L, Han Q, Zhou SF, Liu P. Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol. 2013;6(3):280–5. doi:10.3980/j.issn.2222-3959.2013.03.05.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Li FY, Zhu SX, Wang ZP, Wang H, Zhao Y, Chen GP. Consumption of hydrogen-rich water protects against ferric nitrilotriacetate-induced nephrotoxicity and early tumor promotional events in rats. Food Chem Toxicol. 2013;61:248–54. doi:10.1016/j.fct.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  66. Zhuang Z, Sun XJ, Zhang X, Liu HD, You WC, Ma CY, et al. Nuclear factor-kappaB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res. 2013;91(12):1599–608. doi:10.1002/jnr.23281.

    Article  CAS  PubMed  Google Scholar 

  67. Tan YC, Xie F, Zhang HL, Zhu YL, Chen K, Tan HM, et al. Hydrogen-rich saline attenuates postoperative liver failure after major hepatectomy in rats. Clin Res Hepatol Gastroenterol. 2014;38(3):337–45. doi:10.1016/j.clinre.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J, Wu Q, Song S, Wan Y, Zhang R, Tai M, et al. Effect of hydrogen-rich water on acute peritonitis of rat models. Int Immunopharmacol. 2014;21(1):94–101. doi:10.1016/j.intimp.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  69. Xin HG, Zhang BB, Wu ZQ, Hang XF, Xu WS, Ni W, et al. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol Cell Biochem. 2014;392(1–2):117–24. doi:10.1007/s11010-014-2024-4.

    Article  CAS  PubMed  Google Scholar 

  70. Wang X, Yu P, Yong Y, Liu X, Jiang J, Liu D, et al. Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns. 2015;41(2):379–85. doi:10.1016/j.burns.2014.07.012.

    Article  PubMed  Google Scholar 

  71. Zhang CB, Tang YC, Xu XJ, Guo SX, Wang HZ. Hydrogen gas inhalation protects against liver ischemia/reperfusion injury by activating the NF-kappaB signaling pathway. Exp Ther Med. 2015;9(6):2114–20. doi:10.3892/etm.2015.2385.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Shi Q, Liao KS, Zhao KL, Wang WX, Zuo T, Deng WH, et al. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-kappaB pathway. Mediators Inflamm. 2015;2015:685043. doi:10.1155/2015/685043.

    PubMed Central  PubMed  Google Scholar 

  73. Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q et al. Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-kappaB Pathway and NLRP3 Inflammasome. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9242-y.

  74. Chen X, Liu Q, Wang D, Feng S, Zhao Y, Shi Y, et al. Protective Effects of Hydrogen-Rich Saline on Rats with Smoke Inhalation Injury. Oxid Med Cell Longev. 2015;2015:106836. doi:10.1155/2015/106836.

    PubMed Central  PubMed  Google Scholar 

  75. Kohama K, Yamashita H, Aoyama-Ishikawa M, Takahashi T, Billiar TR, Nishimura T, et al. Hydrogen inhalation protects against acute lung injury induced by hemorrhagic shock and resuscitation. Surgery. 2015;158(2):399–407. doi:10.1016/j.surg.2015.03.038.

    Article  PubMed  Google Scholar 

  76. Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J, et al. Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediators Inflamm. 2014;2014:930894. doi:10.1155/2014/930894.

    PubMed Central  PubMed  Google Scholar 

  77. Liu FT, Xu SM, Xiang ZH, Li XN, Li J, Yuan HB, et al. Molecular hydrogen suppresses reactive astrogliosis related to oxidative injury during spinal cord injury in rats. CNS Neurosci Ther. 2014;20(8):778–86. doi:10.1111/cns.12258.

    Article  CAS  PubMed  Google Scholar 

  78. Kishimoto Y, Kato T, Ito M, Azuma Y, Fukasawa Y, Ohno K, et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg. 2015;150:645–54. doi:10.1016/j.jtcvs.2015.05.052.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang L, Shu R, Wang C, Wang H, Li N, Wang G. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3beta in the DRG in rats. Brain Res Bull. 2014;106:47–55. doi:10.1016/j.brainresbull.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  80. Xie K, Wang W, Chen H, Han H, Liu D, Wang G, et al. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase. Shock. 2015;44(1):58–64. doi:10.1097/SHK.0000000000000365.

    Article  CAS  PubMed  Google Scholar 

  81. Spulber S, Edoff K, Hong L, Morisawa S, Shirahata S, Ceccatelli S. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One. 2012;7(7):e42078. doi:10.1371/journal.pone.0042078.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kawamura T, Wakabayashi N, Shigemura N, Huang CS, Masutani K, Tanaka Y, et al. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am J Physiol Lung Cell Mol Physiol. 2013;304(10):L646–56. doi:10.1152/ajplung.00164.2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Zhai X, Chen X, Shi J, Shi D, Ye Z, Liu W, et al. Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic Biol Med. 2013;65:731–41. doi:10.1016/j.freeradbiomed.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  84. Xie Q, Li XX, Zhang P, Li JC, Cheng Y, Feng YL, et al. Hydrogen gas protects against serum and glucose deprivationinduced myocardial injury in H9c2 cells through activation of the NFE2related factor 2/heme oxygenase 1 signaling pathway. Mol Med Rep. 2014;10(2):1143–9. doi:10.3892/mmr.2014.2283.

    CAS  PubMed  Google Scholar 

  85. Song G, Zong C, Zhang Z, Yu Y, Yao S, Jiao P, et al. Molecular Hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor knockout mice. Free Radic Biol Med. 2015;87:58–68. doi:10.1016/j.freeradbiomed.2015.06.018.

    Article  CAS  PubMed  Google Scholar 

  86. Li Y, Xie K, Chen H, Wang G, Yu Y. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J Surg Res. 2015;196(1):136–48. doi:10.1016/j.jss.2015.02.042.

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Li Q, Chen H, Wang T, Liu L, Wang G, et al. Hydrogen Gas Alleviates the Intestinal Injury Caused by Severe Sepsis in Mice by Increasing the Expression of Heme Oxygenase-1. Shock. 2015;44(1):90–8. doi:10.1097/SHK.0000000000000382.

    Article  PubMed  CAS  Google Scholar 

  88. Kawamura T, Huang CS, Peng X, Masutani K, Shigemura N, Billiar TR, et al. The effect of donor treatment with hydrogen on lung allograft function in rats. Surgery. 2011;150(2):240–9. doi:10.1016/j.surg.2011.05.019.

    Article  PubMed  Google Scholar 

  89. Buchholz BM, Masutani K, Kawamura T, Peng X, Toyoda Y, Billiar TR, et al. Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation. 2011;92(9):985–92. doi:10.1097/TP.0b013e318230159d.

    CAS  PubMed  Google Scholar 

  90. Chen HG, Xie KL, Han HZ, Wang WN, Liu DQ, Wang GL, et al. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg. 2013;11(10):1060–6. doi:10.1016/j.ijsu.2013.10.007.

    Article  PubMed  Google Scholar 

  91. Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol. 2014;171(2):1–8. doi:10.1016/j.jplph.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  92. Chen Y, Chen H, Xie K, Liu L, Li Y, Yu Y, et al. H Treatment Attenuated Pain Behavior and Cytokine Release Through the HO-1/CO Pathway in a Rat Model of Neuropathic Pain. Inflammation. 2015;38:1835–46. doi:10.1007/s10753-015-0161-x.

    Article  CAS  PubMed  Google Scholar 

  93. Yu J, Zhang W, Zhang R, Ruan X, Ren P, Lu B. Lactulose accelerates liver regeneration in rats by inducing hydrogen. J Surg Res. 2015;195(1):128–35. doi:10.1016/j.jss.2015.01.034.

    Article  CAS  PubMed  Google Scholar 

  94. Wei R, Zhang R, Xie Y, Shen L, Chen F. Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress. Cell Physiol Biochem. 2015;36(2):585–98. doi:10.1159/000430122.

    Article  CAS  PubMed  Google Scholar 

  95. Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H. Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep. 2013;3:3273. doi:10.1038/srep03273.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H(2) therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord. 2013;28(6):836–9. doi:10.1002/mds.25375.

    Article  CAS  PubMed  Google Scholar 

  97. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One. 2009;4(9):e7247. doi:10.1371/journal.pone.0007247.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007;361(3):670–4. doi:10.1016/j.bbrc.2007.07.088.

    Article  CAS  PubMed  Google Scholar 

  99. Chen CH, Manaenko A, Zhan Y, Liu WW, Ostrowki RP, Tang J, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience. 2010;169(1):402–14. doi:10.1016/j.neuroscience.2010.04.043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Hugyecz M, Mracsko E, Hertelendy P, Farkas E, Domoki F, Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res. 2011;1404:31–8. doi:10.1016/j.brainres.2011.05.068.

    Article  CAS  PubMed  Google Scholar 

  101. Ono H, Nishijima Y, Adachi N, Tachibana S, Chitoku S, Mukaihara S, et al. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med Gas Res. 2011;1(1):12. doi:10.1186/2045-9912-1-12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Liu Y, Liu W, Sun X, Li R, Sun Q, Cai J, et al. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model. Med Gas Res. 2011;1(1):15. doi:10.1186/2045-9912-1-15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Li J, Dong Y, Chen H, Han H, Yu Y, Wang G, et al. Protective effects of hydrogen-rich saline in a rat model of permanent focal cerebral ischemia via reducing oxidative stress and inflammatory cytokines. Brain Res. 2012;1486:103–11. doi:10.1016/j.brainres.2012.09.031.

    Article  CAS  PubMed  Google Scholar 

  104. Nagatani K, Wada K, Takeuchi S, Kobayashi H, Uozumi Y, Otani N, et al. Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia. Shock. 2012;37(6):645–52. doi:10.1097/SHK.0b013e31824ed57c.

    Article  CAS  PubMed  Google Scholar 

  105. Ge P, Zhao J, Li S, Ding Y, Yang F, Luo Y. Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress. Neurol Res. 2012;34(2):187–94. doi:10.1179/1743132812Y.0000000002.

    CAS  PubMed  Google Scholar 

  106. Nagatani K, Nawashiro H, Takeuchi S, Tomura S, Otani N, Osada H, et al. Safety of intravenous administration of hydrogen-enriched fluid in patients with acute cerebral ischemia: initial clinical studies. Med Gas Res. 2013;3(1):13. doi:10.1186/2045-9912-3-13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Olah O, Toth-Szuki V, Temesvari P, Bari F, Domoki F. Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs. Neonatology. 2013;104(2):79–86. doi:10.1159/000348445.

    Article  CAS  PubMed  Google Scholar 

  108. Cui Y, Zhang H, Ji M, Jia M, Chen H, Yang J, et al. Hydrogen-rich saline attenuates neuronal ischemia--reperfusion injury by protecting mitochondrial function in rats. J Surg Res. 2014;192(2):564–72. doi:10.1016/j.jss.2014.05.060.

    Article  CAS  PubMed  Google Scholar 

  109. Han L, Tian R, Yan H, Pei L, Hou Z, Hao S, et al. Hydrogen-rich water protects against ischemic brain injury in rats by regulating calcium buffering proteins. Brain Res. 2015;1615:129–38. doi:10.1016/j.brainres.2015.04.038.

    Article  CAS  PubMed  Google Scholar 

  110. Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, et al. Hydrogen improves neurological function through attenuation of blood–brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci. 2015;16(1):22. doi:10.1186/s12868-015-0165-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, et al. Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci. 2012;13:47. doi:10.1186/1471-2202-13-47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2012;40(4):1291–6. doi:10.1097/CCM.0b013e31823da96d.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Takeuchi S, Mori K, Arimoto H, Fujii K, Nagatani K, Tomura S, et al. Effects of intravenous infusion of hydrogen-rich fluid combined with intra-cisternal infusion of magnesium sulfate in severe aneurysmal subarachnoid hemorrhage: study protocol for a randomized controlled trial. BMC Neurol. 2014;14:176. doi:10.1186/s12883-014-0176-1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, et al. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res. 2010;1354:196–205. doi:10.1016/j.brainres.2010.07.038.

    Article  CAS  PubMed  Google Scholar 

  115. Eckermann JM, Chen W, Jadhav V, Hsu FP, Colohan AR, Tang J, et al. Hydrogen is neuroprotective against surgically induced brain injury. Med Gas Res. 2011;1(1):7. doi:10.1186/2045-9912-1-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Hou Z, Luo W, Sun X, Hao S, Zhang Y, Xu F, et al. Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury. Brain Res Bull. 2012;88(6):560–5. doi:10.1016/j.brainresbull.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  117. Ji X, Tian Y, Xie K, Liu W, Qu Y, Fei Z. Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress. J Surg Res. 2012;178(1):e9–16. doi:10.1016/j.jss.2011.12.038.

    Article  CAS  PubMed  Google Scholar 

  118. Dohi K, Kraemer BC, Erickson MA, McMillan PJ, Kovac A, Flachbartova Z, et al. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One. 2014;9(9):e108034. doi:10.1371/journal.pone.0108034.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, Masuda A, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett. 2009;453(2):81–5. doi:10.1016/j.neulet.2009.02.016.

    Article  CAS  PubMed  Google Scholar 

  120. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152–61. doi:10.1016/j.brainres.2010.02.046.

    Article  CAS  PubMed  Google Scholar 

  121. Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology. 2009;34(2):501–8. doi:10.1038/npp.2008.95.

    Article  CAS  PubMed  Google Scholar 

  122. Gu Y, Huang CS, Inoue T, Yamashita T, Ishida T, Kang KM, et al. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice. J Clin Biochem Nutr. 2010;46(3):269–76. doi:10.3164/jcbn.10-19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Liu L, Xie K, Chen H, Dong X, Li Y, Yu Y, et al. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 2014;1589:78–92. doi:10.1016/j.brainres.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  124. Ueda Y, Nakajima A, Oikawa T. Hydrogen-related enhancement of in vivo antioxidant ability in the brain of rats fed coral calcium hydride. Neurochem Res. 2010;35(10):1510–5. doi:10.1007/s11064-010-0204-5.

    Article  CAS  PubMed  Google Scholar 

  125. Kashiwagi T, Yan H, Hamasaki T, Kinjo T, Nakamichi N, Teruya K, et al. Electrochemically reduced water protects neural cells from oxidative damage. Oxid Med Cell Longev. 2014;2014:869121. doi:10.1155/2014/869121.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Huang Y, Xie K, Li J, Xu N, Gong G, Wang G, et al. Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res. 2011;1378:125–36. doi:10.1016/j.brainres.2010.12.071.

    Article  CAS  PubMed  Google Scholar 

  127. Zhou L, Wang X, Xue W, Xie K, Huang Y, Chen H, et al. Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits. Brain Res. 2013;1517:150–60. doi:10.1016/j.brainres.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  128. Chen C, Chen Q, Mao Y, Xu S, Xia C, Shi X, et al. Hydrogen-rich saline protects against spinal cord injury in rats. Neurochem Res. 2010;35(7):1111–8. doi:10.1007/s11064-010-0162-y.

    Article  CAS  PubMed  Google Scholar 

  129. Ge Y, Wu F, Sun X, Xiang Z, Yang L, Huang S, et al. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats. PLoS One. 2014;9(5):e97436. doi:10.1371/journal.pone.0097436.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Kawaguchi M, Satoh Y, Otsubo Y, Kazama T. Molecular hydrogen attenuates neuropathic pain in mice. PLoS One. 2014;9(6):e100352. doi:10.1371/journal.pone.0100352.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Zhang L, Shu R, Wang H, Yu Y, Wang C, Yang M, et al. Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats. Neuroscience. 2014;280:171–80. doi:10.1016/j.neuroscience.2014.09.024.

    Article  CAS  PubMed  Google Scholar 

  132. Shu RC, Zhang LL, Wang CY, Li N, Wang HY, Xie KL, et al. Spinal peroxynitrite contributes to remifentanil-induced postoperative hyperalgesia via enhancement of divalent metal transporter 1 without iron-responsive element-mediated iron accumulation in rats. Anesthesiology. 2015;122(4):908–20. doi:10.1097/ALN.0000000000000562.

    Article  CAS  PubMed  Google Scholar 

  133. Oharazawa H, Igarashi T, Yokota T, Fujii H, Suzuki H, Machide M, et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2010;51(1):487–92. doi:10.1167/iovs.09-4089.

    Article  PubMed  Google Scholar 

  134. Liu H, Hua N, Xie K, Zhao T, Yu Y. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury. Mol Med Rep. 2015;12(2):2495–502. doi:10.3892/mmr.2015.3731.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Xiao X, Cai J, Xu J, Wang R, Cai J, Liu Y, et al. Protective effects of hydrogen saline on diabetic retinopathy in a streptozotocin-induced diabetic rat model. J Ocul Pharmacol Ther. 2012;28(1):76–82. doi:10.1089/jop.2010.0129.

    Article  PubMed  CAS  Google Scholar 

  136. Feng Y, Wang R, Xu J, Sun J, Xu T, Gu Q, et al. Hydrogen-rich saline prevents early neurovascular dysfunction resulting from inhibition of oxidative stress in STZ-diabetic rats. Curr Eye Res. 2013;38(3):396–404. doi:10.3109/02713683.2012.748919.

    Article  CAS  PubMed  Google Scholar 

  137. Huang L, Zhao S, Zhang JH, Sun X. Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression. Ophthalmic Res. 2012;47(3):122–7. doi:10.1159/000329600.

    Article  CAS  PubMed  Google Scholar 

  138. Feng M, Wang XH, Yang XB, Xiao Q, Jiang FG. Protective effect of saturated hydrogen saline against blue light-induced retinal damage in rats. Int J Ophthalmol. 2012;5(2):151–7. doi:10.3980/j.issn.2222-3959.2012.02.07.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Tian L, Zhang L, Xia F, An J, Sugita Y, Zhang Z. Hydrogen-rich saline ameliorates the retina against light-induced damage in rats. Med Gas Res. 2013;3(1):19. doi:10.1186/2045-9912-3-19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Yokota T, Kamimura N, Igarashi T, Takahashi H, Ohta S, Oharazawa H. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clin Experiment Ophthalmol. 2015;43:568–77. doi:10.1111/ceo.12525.

    Article  PubMed  Google Scholar 

  141. Sun JC, Xu T, Zuo Q, Wang RB, Qi AQ, Cao WL, et al. Hydrogen-rich saline promotes survival of retinal ganglion cells in a rat model of optic nerve crush. PLoS One. 2014;9(6):e99299. doi:10.1371/journal.pone.0099299.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Yang CX, Yan H, Ding TB. Hydrogen saline prevents selenite-induced cataract in rats. Mol Vis. 2013;19:1684–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Kikkawa YS, Nakagawa T, Horie RT, Ito J. Hydrogen protects auditory hair cells from free radicals. Neuroreport. 2009;20(7):689–94. doi:10.1097/WNR.0b013e32832a5c68.

    Article  PubMed  Google Scholar 

  144. Taura A, Kikkawa YS, Nakagawa T, Ito J. Hydrogen protects vestibular hair cells from free radicals. Acta Otolaryngol Suppl. 2010;130(563):95–100. doi:10.3109/00016489.2010.486799.

    Article  CAS  Google Scholar 

  145. Lin Y, Kashio A, Sakamoto T, Suzukawa K, Kakigi A, Yamasoba T. Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs. Neurosci Lett. 2011;487(1):12–6. doi:10.1016/j.neulet.2010.09.064.

    Article  CAS  PubMed  Google Scholar 

  146. Zhou Y, Zheng H, Ruan F, Chen X, Zheng G, Kang M, et al. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs. Neuroscience. 2012;209:47–53. doi:10.1016/j.neuroscience.2012.02.028.

    Article  CAS  PubMed  Google Scholar 

  147. Chen L, Yu N, Lu Y, Wu L, Chen D, Guo W, et al. Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect. PLoS One. 2014;9(6):e100774. doi:10.1371/journal.pone.0100774.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Shiotani A. Inhaled hydrogen gas therapy for prevention of noise-induced hearing loss through reducing reactive oxygen species. Neurosci Res. 2014;89:69–74. doi:10.1016/j.neures.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  149. Qu J, Li X, Wang J, Mi W, Xie K, Qiu J. Inhalation of hydrogen gas attenuates cisplatin-induced ototoxicity via reducing oxidative stress. Int J Pediatr Otorhinolaryngol. 2012;76(1):111–5. doi:10.1016/j.ijporl.2011.10.014.

    Article  PubMed  Google Scholar 

  150. Kikkawa YS, Nakagawa T, Taniguchi M, Ito J. Hydrogen protects auditory hair cells from cisplatin-induced free radicals. Neurosci Lett. 2014;579:125–9. doi:10.1016/j.neulet.2014.07.025.

    Article  CAS  PubMed  Google Scholar 

  151. Qu J, Gan YN, Xie KL, Liu WB, Wang YF, Hei RY, et al. Inhalation of hydrogen gas attenuates ouabain-induced auditory neuropathy in gerbils. Acta Pharmacol Sin. 2012;33(4):445–51. doi:10.1038/aps.2011.190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Tomofuji T, Kawabata Y, Kasuyama K, Endo Y, Yoneda T, Yamane M, et al. Effects of hydrogen-rich water on aging periodontal tissues in rats. Sci Rep. 2014;4:5534. doi:10.1038/srep05534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Shi J, Yao F, Zhong C, Pan X, Yang Y, Lin Q. Hydrogen saline is protective for acute lung ischaemia/reperfusion injuries in rats. Heart Lung Circ. 2012;21(9):556–63. doi:10.1016/j.hlc.2012.05.782.

    Article  CAS  PubMed  Google Scholar 

  154. Li H, Zhou R, Liu J, Li Q, Zhang J, Mu J, et al. Hydrogen-rich saline attenuates lung ischemia-reperfusion injury in rabbits. J Surg Res. 2012;174(1):e11–6. doi:10.1016/j.jss.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  155. Zheng J, Liu K, Kang Z, Cai J, Liu W, Xu W, et al. Saturated hydrogen saline protects the lung against oxygen toxicity. Undersea Hyperb Med. 2010;37(3):185–92.

    CAS  PubMed  Google Scholar 

  156. Sun Q, Cai J, Liu S, Liu Y, Xu W, Tao H, et al. Hydrogen-rich saline provides protection against hyperoxic lung injury. J Surg Res. 2011;165(1):e43–9. doi:10.1016/j.jss.2010.09.024.

    Article  CAS  PubMed  Google Scholar 

  157. Huang CS, Kawamura T, Lee S, Tochigi N, Shigemura N, Buchholz BM, et al. Hydrogen inhalation ameliorates ventilator-induced lung injury. Crit Care. 2010;14(6):R234. doi:10.1186/cc9389.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Liu H, Liang X, Wang D, Zhang H, Liu L, Chen H, et al. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock. 2015;43(5):504–11. doi:10.1097/SHK.0000000000000316.

    Article  CAS  PubMed  Google Scholar 

  159. Mao YF, Zheng XF, Cai JM, You XM, Deng XM, Zhang JH, et al. Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun. 2009;381(4):602–5. doi:10.1016/j.bbrc.2009.02.105.

    Article  CAS  PubMed  Google Scholar 

  160. Fang Y, Fu XJ, Gu C, Xu P, Wang Y, Yu WR, et al. Hydrogen-rich saline protects against acute lung injury induced by extensive burn in rat model. J Burn Care Res. 2011;32(3):e82–91. doi:10.1097/BCR.0b013e318217f84f.

    Article  PubMed  Google Scholar 

  161. Liu S, Liu K, Sun Q, Liu W, Xu W, Denoble P, et al. Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats. J Biomed Biotechnol. 2011;2011:305086. doi:10.1155/2011/305086.

    PubMed Central  PubMed  Google Scholar 

  162. Sato C, Kamijo Y, Yoshimura K, Nagaki T, Yamaya T, Asakuma S, et al. Effects of hydrogen water on paraquat-induced pulmonary fibrosis in mice. Kitasato Med J. 2015;45(1):9–16.

    Google Scholar 

  163. Ning Y, Shang Y, Huang H, Zhang J, Dong Y, Xu W, et al. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats. PLoS One. 2013;8(12):e83429. doi:10.1371/journal.pone.0083429.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. He B, Zhang Y, Kang B, Xiao J, Xie B, Wang Z. Protection of oral hydrogen water as an antioxidant on pulmonary hypertension. Mol Biol Rep. 2013;40(9):5513–21. doi:10.1007/s11033-013-2653-9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Hayashi T, Yoshioka T, Hasegawa K, Miyamura M, Mori T, Ukimura A, et al. Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice. Am J Physiol Heart Circ Physiol. 2011;301(3):H1062–9. doi:10.1152/ajpheart.00150.2011.

    Article  CAS  PubMed  Google Scholar 

  166. Kato R, Nomura A, Sakamoto A, Yasuda Y, Amatani K, Nagai S, et al. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters. Am J Physiol Heart Circ Physiol. 2014;307(11):H1626–33. doi:10.1152/ajpheart.00228.2014.

    Article  CAS  PubMed  Google Scholar 

  167. Yu YS, Zheng H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem. 2012;365(1–2):233–42. doi:10.1007/s11010-012-1264-4.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang JY, Wu QF, Wan Y, Song SD, Xu J, Xu XS, et al. Protective role of hydrogen-rich water on aspirin-induced gastric mucosal damage in rats. World J Gastroenterol. 2014;20(6):1614–22. doi:10.3748/wjg.v20.i6.1614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Xue J, Shang G, Tanaka Y, Saihara Y, Hou L, Velasquez N, et al. Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water. BMC Complement Altern Med. 2014;14:81. doi:10.1186/1472-6882-14-81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, et al. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res. 2009;43(5):478–84. doi:10.1080/10715760902870603.

    Article  CAS  PubMed  Google Scholar 

  171. Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, et al. The effects of hydrogen-rich saline on the contractile and structural changes of intestine induced by ischemia-reperfusion in rats. J Surg Res. 2011;167(2):316–22. doi:10.1016/j.jss.2009.07.045.

    Article  CAS  PubMed  Google Scholar 

  172. Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T. Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun. 2009;386(1):11–5. doi:10.1016/j.bbrc.2009.05.117.

    Article  CAS  PubMed  Google Scholar 

  173. He J, Xiong S, Zhang J, Wang J, Sun A, Mei X, et al. Protective effects of hydrogen-rich saline on ulcerative colitis rat model. J Surg Res. 2013;185(1):174–81. doi:10.1016/j.jss.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  174. Chen X, Zhai X, Shi J, Liu WW, Tao H, Sun X, et al. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production. Dig Dis Sci. 2013;58(6):1560–8. doi:10.1007/s10620-013-2563-7.

    Article  CAS  PubMed  Google Scholar 

  175. Sheng Q, Lv Z, Cai W, Song H, Qian L, Wang X. Protective effects of hydrogen-rich saline on necrotizing enterocolitis in neonatal rats. J Pediatr Surg. 2013;48(8):1697–706. doi:10.1016/j.jpedsurg.2012.11.038.

    Article  PubMed  Google Scholar 

  176. Nishimura N, Tanabe H, Sasaki Y, Makita Y, Ohata M, Yokoyama S, et al. Pectin and high-amylose maize starch increase caecal hydrogen production and relieve hepatic ischaemia-reperfusion injury in rats. Br J Nutr. 2012;107(4):485–92. doi:10.1017/S0007114511003229.

    Article  CAS  PubMed  Google Scholar 

  177. Liu Y, Yang L, Tao K, Vizcaychipi MP, Lloyd DM, Sun X, et al. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release. BMC Gastroenterol. 2014;14:12. doi:10.1186/1471-230X-14-12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Matsuno N, Watanabe R, Kimura M, Iwata S, Fujiyama M, Kono S, et al. Beneficial effects of hydrogen gas on porcine liver reperfusion injury with use of total vascular exclusion and active venous bypass. Transplant Proc. 2014;46(4):1104–6. doi:10.1016/j.transproceed.2013.11.134.

    Article  CAS  PubMed  Google Scholar 

  179. Xia C, Liu W, Zeng D, Zhu L, Sun X, Sun X. Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin Transl Sci. 2013;6(5):372–5. doi:10.1111/cts.12076.

    Article  CAS  PubMed  Google Scholar 

  180. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, et al. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology. 2012;56(3):912–21. doi:10.1002/hep.25782.

    Article  CAS  PubMed  Google Scholar 

  181. Xiang L, Tan JW, Huang LJ, Jia L, Liu YQ, Zhao YQ, et al. Inhalation of hydrogen gas reduces liver injury during major hepatotectomy in swine. World J Gastroenterol. 2012;18(37):5197–204. doi:10.3748/wjg.v18.i37.5197.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, Shanmugam KT, et al. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun. 2009;386(2):316–21. doi:10.1016/j.bbrc.2009.06.024.

    Article  CAS  PubMed  Google Scholar 

  183. Lee PC, Yang YY, Huang CS, Hsieh SL, Lee KC, Hsieh YC, et al. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol Res. 2015;45(5):578–88. doi:10.1111/hepr.12379.

    Article  CAS  PubMed  Google Scholar 

  184. Koyama Y, Taura K, Hatano E, Tanabe K, Yamamoto G, Nakamura K, et al. Effects of oral intake of hydrogen water on liver fibrogenesis in mice. Hepatol Res. 2014;44(6):663–77. doi:10.1111/hepr.12165.

    Article  CAS  PubMed  Google Scholar 

  185. Chen H, Sun YP, Li Y, Liu WW, Xiang HG, Fan LY, et al. Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem Biophys Res Commun. 2010;393(2):308–13. doi:10.1016/j.bbrc.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  186. Ren J, Luo Z, Tian F, Wang Q, Li K, Wang C. Hydrogen-rich saline reduces the oxidative stress and relieves the severity of trauma-induced acute pancreatitis in rats. J Trauma Acute Care Surg. 2012;72(6):1555–61. doi:10.1097/TA.0b013e31824a7913.

    Article  CAS  PubMed  Google Scholar 

  187. Zhang DQ, Feng H, Chen WC. Effects of hydrogen-rich saline on taurocholate-induced acute pancreatitis in rat. Evid Based Complement Alternat Med. 2013;2013:731932. doi:10.1155/2013/731932.

    PubMed Central  PubMed  Google Scholar 

  188. Zhu WJ, Nakayama M, Mori T, Nakayama K, Katoh J, Murata Y, et al. Intake of water with high levels of dissolved hydrogen (H2) suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats. Nephrol Dial Transplant. 2011;26(7):2112–8. doi:10.1093/ndt/gfq727.

    Article  CAS  PubMed  Google Scholar 

  189. Shingu C, Koga H, Hagiwara S, Matsumoto S, Goto K, Yokoi I, et al. Hydrogen-rich saline solution attenuates renal ischemia-reperfusion injury. J Anesth. 2010;24(4):569–74. doi:10.1007/s00540-010-0942-1.

    Article  PubMed  Google Scholar 

  190. Wang F, Yu G, Liu SY, Li JB, Wang JF, Bo LL, et al. Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res. 2011;167(2):e339–44. doi:10.1016/j.jss.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

  191. Xu B, Zhang YB, Li ZZ, Yang MW, Wang S, Jiang DP. Hydrogen-rich saline ameliorates renal injury induced by unilateral ureteral obstruction in rats. Int Immunopharmacol. 2013;17(2):447–52. doi:10.1016/j.intimp.2013.06.033.

    Article  CAS  PubMed  Google Scholar 

  192. Gu H, Yang M, Zhao X, Zhao B, Sun X, Gao X. Pretreatment with hydrogen-rich saline reduces the damage caused by glycerol-induced rhabdomyolysis and acute kidney injury in rats. J Surg Res. 2014;188(1):243–9. doi:10.1016/j.jss.2013.12.007.

    Article  CAS  PubMed  Google Scholar 

  193. Liu W, Dong XS, Sun YQ, Liu Z. A novel fluid resuscitation protocol: provide more protection on acute kidney injury during septic shock in rats. Int J Clin Exp Med. 2014;7(4):919–26.

    PubMed Central  PubMed  Google Scholar 

  194. Homma K, Yoshida T, Yamashita M, Hayashida K, Hayashi M, Hori S. Inhalation of Hydrogen Gas Is Beneficial for Preventing Contrast-Induced Acute Kidney Injury in Rats. Nephron Exp Nephrol. 2015. doi:10.1159/000369068.

  195. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009;64(4):753–61. doi:10.1007/s00280-008-0924-2.

    Article  CAS  PubMed  Google Scholar 

  196. Kitamura A, Kobayashi S, Matsushita T, Fujinawa H, Murase K. Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT. Br J Radiol. 2010;83(990):509–14. doi:10.1259/bjr/25604811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Matsushita T, Kusakabe Y, Kitamura A, Okada S, Murase K. Investigation of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using blood oxygenation level-dependent magnetic resonance imaging. Jpn J Radiol. 2011;29(7):503–12. doi:10.1007/s11604-011-0588-4.

    Article  PubMed  Google Scholar 

  198. Matsushita T, Kusakabe Y, Kitamura A, Okada S, Murase K. Protective effect of hydrogen-rich water against gentamicin-induced nephrotoxicity in rats using blood oxygenation level-dependent MR imaging. Magn Reson Med Sci. 2011;10(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  199. Katakura M, Hashimoto M, Tanabe Y, Shido O. Hydrogen-rich water inhibits glucose and alpha,beta -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney. Med Gas Res. 2012;2(1):18. doi:10.1186/2045-9912-2-18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Peng Z, Chen W, Wang L, Ye Z, Gao S, Sun X, et al. Inhalation of hydrogen gas ameliorates glyoxylate-induced calcium oxalate deposition and renal oxidative stress in mice. Int J Clin Exp Pathol. 2015;8(3):2680–9.

    PubMed Central  PubMed  Google Scholar 

  201. Matsumoto S, Ueda T, Kakizaki H. Effect of supplementation with hydrogen-rich water in patients with interstitial cystitis/painful bladder syndrome. Urology. 2013;81(2):226–30. doi:10.1016/j.urology.2012.10.026.

    Article  PubMed  Google Scholar 

  202. Lee JW, Kim JI, Lee YA, Lee DH, Song CS, Cho YJ, et al. Inhaled hydrogen gas therapy for prevention of testicular ischemia/reperfusion injury in rats. J Pediatr Surg. 2012;47(4):736–42. doi:10.1016/j.jpedsurg.2011.09.035.

    Article  PubMed  Google Scholar 

  203. Jiang D, Wu D, Zhang Y, Xu B, Sun X, Li Z. Protective effects of hydrogen rich saline solution on experimental testicular ischemia-reperfusion injury in rats. J Urol. 2012;187(6):2249–53. doi:10.1016/j.juro.2012.01.029.

    Article  CAS  PubMed  Google Scholar 

  204. Fan M, Xu X, He X, Chen L, Qian L, Liu J, et al. Protective effects of hydrogen-rich saline against erectile dysfunction in a streptozotocin induced diabetic rat model. J Urol. 2013;190(1):350–6. doi:10.1016/j.juro.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  205. Li S, Lu D, Zhang Y, Zhang Y. Long-term treatment of hydrogen-rich saline abates testicular oxidative stress induced by nicotine in mice. J Assist Reprod Genet. 2014;31(1):109–14. doi:10.1007/s10815-013-0102-2.

    Article  PubMed Central  PubMed  Google Scholar 

  206. Chen S, Jiang W. Effect of hydrogen injected subcutaneously on testicular tissues of rats exposed to cigarette smoke. Int J Clin Exp Med. 2015;8(4):5565–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  207. Zhao L, Wang YB, Qin SR, Ma XM, Sun XJ, Wang ML, et al. Protective effect of hydrogen-rich saline on ischemia/reperfusion injury in rat skin flap. J Zhejiang Univ Sci B. 2013;14(5):382–91. doi:10.1631/jzus.B1200317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Yoon KS, Huang XZ, Yoon YS, Kim SK, Song SB, Chang BS, et al. Histological study on the effect of electrolyzed reduced water-bathing on UVB radiation-induced skin injury in hairless mice. Biol Pharm Bull. 2011;34(11):1671–7.

    Article  CAS  PubMed  Google Scholar 

  209. Guo Z, Zhou B, Li W, Sun X, Luo D. Hydrogen-rich saline protects against ultraviolet B radiation injury in rats. J Biomed Res. 2012;26(5):365–71. doi:10.7555/JBR.26.20110037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  210. Kato S, Saitoh Y, Iwai K, Miwa N. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J Photochem Photobiol B. 2012;106:24–33. doi:10.1016/j.jphotobiol.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  211. Ignacio RM, Yoon Y-S, Sajo MEJ, Kim C-S, Kim D-H, Kim S-K, et al. The balneotherapy effect of hydrogen reduced water on UVB-mediated skin injury in hairless mice. Mol Cell Toxicol. 2013;9(1):15–21. doi:10.1007/s13273-013-0003-6.

    Article  CAS  Google Scholar 

  212. Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Nakazawa J, et al. Hydrogen(H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res. 2012;2(1):14. doi:10.1186/2045-9912-2-14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Ignacio RM, Kwak HS, Yun YU, Sajo ME, Yoon YS, Kim CS, et al. The Drinking Effect of Hydrogen Water on Atopic Dermatitis Induced by Dermatophagoides farinae Allergen in NC/Nga Mice. Evid Based Complement Alternat Med. 2013;2013:538673. doi:10.1155/2013/538673.

    Article  PubMed Central  PubMed  Google Scholar 

  214. Yoon YS, Sajo ME, Ignacio RM, Kim SK, Kim CS, Lee KJ. Positive Effects of hydrogen water on 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice. Biol Pharm Bull. 2014;37(9):1480–5.

    Article  CAS  PubMed  Google Scholar 

  215. Ishibashi T, Ichikawa M, Sato B, Shibata S, Hara Y, Naritomi Y, et al. Improvement of psoriasis-associated arthritis and skin lesions by treatment with molecular hydrogen: A report of three cases. Mol Med Rep. 2015;12(2):2757–64. doi:10.3892/mmr.2015.3707.

    CAS  PubMed  Google Scholar 

  216. Li Q, Kato S, Matsuoka D, Tanaka H, Miwa N. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med Gas Res. 2013;3(1):20. doi:10.1186/2045-9912-3-20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  217. Yu W, Chiu Y, Lee C, Yoshioka T, Yu H. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes. J Asian Earth Sci. 2013;77:342–8. doi:10.1016/j.jseaes.2013.07.007.

    Article  Google Scholar 

  218. Ishibashi T, Sato B, Rikitake M, Seo T, Kurokawa R, Hara Y, et al. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res. 2012;2(1):27. doi:10.1186/2045-9912-2-27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  219. Ishibashi T, Sato B, Shibata S, Sakai T, Hara Y, Naritomi Y, et al. Therapeutic efficacy of infused molecular hydrogen in saline on rheumatoid arthritis: a randomized, double-blind, placebo-controlled pilot study. Int Immunopharmacol. 2014;21(2):468–73. doi:10.1016/j.intimp.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  220. Cai WW, Zhang MH, Yu YS, Cai JH. Treatment with hydrogen molecule alleviates TNFalpha-induced cell injury in osteoblast. Mol Cell Biochem. 2013;373(1–2):1–9. doi:10.1007/s11010-012-1450-4.

    Article  CAS  PubMed  Google Scholar 

  221. Hanaoka T, Kamimura N, Yokota T, Takai S, Ohta S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med Gas Res. 2011;1(1):18. doi:10.1186/2045-9912-1-18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  222. Huang T, Wang W, Tu C, Yang Z, Bramwell D, Sun X. Hydrogen-rich saline attenuates ischemia-reperfusion injury in skeletal muscle. J Surg Res. 2015;194(2):471–80. doi:10.1016/j.jss.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  223. Ito M, Ibi T, Sahashi K, Ichihara M, Ito M, Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res. 2011;1(1):24. doi:10.1186/2045-9912-1-24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012;2(1):12. doi:10.1186/2045-9912-2-12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Ostojic SM, Vukomanovic B, Calleja-Gonzalez J, Hoffman JR. Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad Med. 2014;126(5):187–95. doi:10.3810/pgm.2014.09.2813.

    Article  PubMed  Google Scholar 

  226. Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008;377(4):1195–8. doi:10.1016/j.bbrc.2008.10.156.

    Article  CAS  PubMed  Google Scholar 

  227. Ekuni D, Tomofuji T, Endo Y, Kasuyama K, Irie K, Azuma T, et al. Hydrogen-rich water prevents lipid deposition in the descending aorta in a rat periodontitis model. Arch Oral Biol. 2012;57(12):1615–22. doi:10.1016/j.archoralbio.2012.04.013.

    Article  CAS  PubMed  Google Scholar 

  228. Jiang H, Yu P, Qian DH, Qin ZX, Sun XJ, Yu J, et al. Hydrogen-rich medium suppresses the generation of reactive oxygen species, elevates the Bcl-2/Bax ratio and inhibits advanced glycation end product-induced apoptosis. Int J Mol Med. 2013;31(6):1381–7. doi:10.3892/ijmm.2013.1334.

    CAS  PubMed  Google Scholar 

  229. Sun Q, Kawamura T, Masutani K, Peng X, Sun Q, Stolz DB, et al. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc Res. 2012;94(1):144–53. doi:10.1093/cvr/cvs024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Sakai T, Sato B, Hara K, Hara Y, Naritomi Y, Koyanagi S, et al. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc Health Risk Manag. 2014;10:591–7. doi:10.2147/VHRM.S68844.

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Zhao S, Mei K, Qian L, Yang Y, Liu W, Huang Y, et al. Therapeutic effects of hydrogen-rich solution on aplastic anemia in vivo. Cell Physiol Biochem. 2013;32(3):549–60. doi:10.1159/000354459.

    Article  CAS  PubMed  Google Scholar 

  232. Kawasaki H, Guan J, Tamama K. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochem Biophys Res Commun. 2010;397(3):608–13. doi:10.1016/j.bbrc.2010.06.009.

    Article  CAS  PubMed  Google Scholar 

  233. Tanikawa R, Takahashi I, Okubo N, Ono M, Okumura T, Ishibashi G, et al. Relationship between Exhaled Hydrogen and Human Neutrophil Function in the Japanese General Population. Hirosaki Medical Journal. 2015;65:138–46.

    Google Scholar 

  234. Takeuchi S, Wada K, Nagatani K, Osada H, Otani N, Nawashiro H. Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study. Intern Med. 2012;51(11):1309–13.

    Article  CAS  PubMed  Google Scholar 

  235. Kato S, Hokama R, Okayasu H, Saitoh Y, Iwai K, Miwa N. Colloidal platinum in hydrogen-rich water exhibits radical-scavenging activity and improves blood fluidity. J Nanosci Nanotechnol. 2012;12(5):4019–27.

    Article  CAS  PubMed  Google Scholar 

  236. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28(3):137–43. doi:10.1016/j.nutres.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  237. Kamimura N, Nishimaki K, Ohsawa I, Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity. 2011;19(7):1396–403. doi:10.1038/oby.2011.6.

    Article  CAS  PubMed  Google Scholar 

  238. Li Y, Hamasaki T, Nakamichi N, Kashiwagi T, Komatsu T, Ye J, et al. Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology. 2011;63(2):119–31. doi:10.1007/s10616-010-9317-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  239. Yu P, Wang Z, Sun X, Chen X, Zeng S, Chen L, et al. Hydrogen-rich medium protects human skin fibroblasts from high glucose or mannitol induced oxidative damage. Biochem Biophys Res Commun. 2011;409(2):350–5. doi:10.1016/j.bbrc.2011.05.024.

    Article  CAS  PubMed  Google Scholar 

  240. Wang QJ, Zha XJ, Kang ZM, Xu MJ, Huang Q, Zou DJ. Therapeutic effects of hydrogen saturated saline on rat diabetic model and insulin resistant model via reduction of oxidative stress. Chin Med J (Engl). 2012;125(9):1633–7. doi:10.3760/cma.j.issn.0366-6999.2012.09.020.

    CAS  Google Scholar 

  241. Amitani H, Asakawa A, Cheng K, Amitani M, Kaimoto K, Nakano M, et al. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle. PLoS One. 2013;8(1):e53913. doi:10.1371/journal.pone.0053913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  242. Zong C, Song G, Yao S, Li L, Yu Y, Feng L, et al. Administration of hydrogen-saturated saline decreases plasma low-density lipoprotein cholesterol levels and improves high-density lipoprotein function in high-fat diet-fed hamsters. Metabolism. 2012;61(6):794–800. doi:10.1016/j.metabol.2011.10.014.

    Article  CAS  PubMed  Google Scholar 

  243. Song G, Li M, Sang H, Zhang L, Li X, Yao S, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res. 2013;54(7):1884–93. doi:10.1194/jlr.M036640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  244. Song G, Lin Q, Zhao H, Liu M, Ye F, Sun Y, et al. Hydrogen activates ATP-binding cassette transporter A1-dependent efflux ex vivo and improves high-density lipoprotein function in patients with hypercholesterolemia: a double-blinded, randomized and placebo-controlled trial. J Clin Endocrinol Metab. 2015;100:2724–33. doi:10.1210/jc.2015-1321.

    Article  CAS  PubMed  Google Scholar 

  245. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010;46(2):140–9. doi:10.3164/jcbn.09-100.

    Article  PubMed Central  PubMed  Google Scholar 

  246. Hashimoto M, Katakura M, Nabika T, Tanabe Y, Hossain S, Tsuchikura S, et al. Effects of hydrogen-rich water on abnormalities in a SHR.Cg-Leprcp/NDmcr rat - a metabolic syndrome rat model. Med Gas Res. 2011;1(1):26. doi:10.1186/2045-9912-1-26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  247. Nishimura N, Tanabe H, Adachi M, Yamamoto T, Fukushima M. Colonic hydrogen generated from fructan diffuses into the abdominal cavity and reduces adipose mRNA abundance of cytokines in rats. J Nutr. 2013;143(12):1943–9. doi:10.3945/jn.113.183004.

    Article  CAS  PubMed  Google Scholar 

  248. Nakai Y, Sato B, Ushiama S, Okada S, Abe K, Arai S. Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water. Biosci Biotechnol Biochem. 2011;75(4):774–6. doi:10.1271/bbb.100819.

    Article  CAS  PubMed  Google Scholar 

  249. Ostojic SM. Serum alkalinization and hydrogen-rich water in healthy men. Mayo Clin Proc. 2012;87(5):501–2. doi:10.1016/j.mayocp.2012.02.008.

    Article  PubMed Central  PubMed  Google Scholar 

  250. Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Res Sports Med. 2014;22(1):49–60. doi:10.1080/15438627.2013.852092.

    Article  PubMed  Google Scholar 

  251. Xie K, Yu Y, Pei Y, Hou L, Chen S, Xiong L, et al. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock. 2010;34(1):90–7. doi:10.1097/SHK.0b013e3181cdc4ae.

    Article  CAS  PubMed  Google Scholar 

  252. Zhou J, Chen Y, Huang GQ, Li J, Wu GM, Liu L, et al. Hydrogen-rich saline reverses oxidative stress, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and puncture. J Surg Res. 2012;178(1):390–400. doi:10.1016/j.jss.2012.01.041.

    Article  CAS  PubMed  Google Scholar 

  253. Xie K, Fu W, Xing W, Li A, Chen H, Han H, et al. Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock. 2012;38(6):656–63. doi:10.1097/SHK.0b013e3182758646.

    CAS  PubMed  Google Scholar 

  254. Li GM, Ji MH, Sun XJ, Zeng QT, Tian M, Fan YX, et al. Effects of hydrogen-rich saline treatment on polymicrobial sepsis. J Surg Res. 2013;181(2):279–86. doi:10.1016/j.jss.2012.06.058.

    Article  CAS  PubMed  Google Scholar 

  255. Liu W, Shan LP, Dong XS, Liu XW, Ma T, Liu Z. Combined early fluid resuscitation and hydrogen inhalation attenuates lung and intestine injury. World J Gastroenterol. 2013;19(4):492–502. doi:10.3748/wjg.v19.i4.492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  256. Yu Y, Wang WN, Han HZ, Xie KL, Wang GL, Yu YH. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin. Genet Mol Res. 2015;14(2):6202–12. doi:10.4238/2015.June.9.6.

    Article  CAS  PubMed  Google Scholar 

  257. Xie K, Yu Y, Zhang Z, Liu W, Pei Y, Xiong L, et al. Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model. Shock. 2010;34(5):495–501. doi:10.1097/SHK.0b013e3181def9aa.

    Article  CAS  PubMed  Google Scholar 

  258. Xu Z, Zhou J, Cai J, Zhu Z, Sun X, Jiang C. Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema. J Inflamm (Lond). 2012;9:2. doi:10.1186/1476-9255-9-2.

    Article  CAS  Google Scholar 

  259. Fujii Y, Shirai M, Inamori S, Shimouchi A, Sonobe T, Tsuchimochi H, et al. Insufflation of hydrogen gas restrains the inflammatory response of cardiopulmonary bypass in a rat model. Artif Organs. 2013;37(2):136–41. doi:10.1111/j.1525-1594.2012.01535.x.

    Article  CAS  PubMed  Google Scholar 

  260. Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett. 2008;441(2):167–72. doi:10.1016/j.neulet.2008.05.077.

    Article  CAS  PubMed  Google Scholar 

  261. Cai J, Kang Z, Liu K, Liu W, Li R, Zhang JH, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res. 2009;1256:129–37. doi:10.1016/j.brainres.2008.11.048.

    Article  CAS  PubMed  Google Scholar 

  262. Domoki F, Olah O, Zimmermann A, Nemeth I, Toth-Szuki V, Hugyecz M, et al. Hydrogen is neuroprotective and preserves cerebrovascular reactivity in asphyxiated newborn pigs. Pediatr Res. 2010;68(5):387–92. doi:10.1203/PDR.0b013e3181f2e81c.

    CAS  PubMed  Google Scholar 

  263. Mano Y, Kotani T, Ito M, Nagai T, Ichinohashi Y, Yamada K, et al. Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia-reperfusion. Free Radic Biol Med. 2014;69:324–30. doi:10.1016/j.freeradbiomed.2014.01.037.

    Article  CAS  PubMed  Google Scholar 

  264. Yang X, Guo L, Sun X, Chen X, Tong X. Protective effects of hydrogen-rich saline in preeclampsia rat model. Placenta. 2011;32(9):681–6. doi:10.1016/j.placenta.2011.06.020.

    Article  CAS  PubMed  Google Scholar 

  265. Guan Z, Li HF, Guo LL, Yang X. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells. Arch Gynecol Obstet. 2015;292(2):337–42. doi:10.1007/s00404-015-3647-8.

    Article  CAS  PubMed  Google Scholar 

  266. Saitoh Y, Okayasu H, Xiao L, Harata Y, Miwa N. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol Res. 2008;17(6):247–55.

    Article  CAS  PubMed  Google Scholar 

  267. Zhao L, Zhou C, Zhang J, Gao F, Li B, Chuai Y, et al. Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice. Int J Biol Sci. 2011;7(3):297–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  268. Ye J, Li Y, Hamasaki T, Nakamichi N, Komatsu T, Kashiwagi T, et al. Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol Pharm Bull. 2008;31(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  269. Runtuwene J, Amitani H, Amitani M, Asakawa A, Cheng KC, Inui A. Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ. 2015;3:e859. doi:10.7717/peerj.859.

    Article  PubMed Central  PubMed  Google Scholar 

  270. Qian L, Cao F, Cui J, Wang Y, Huang Y, Chuai Y, et al. The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res. 2010;51(6):741–7. doi:10.1269/jrr.10093.

    Article  CAS  PubMed  Google Scholar 

  271. Terasaki Y, Ohsawa I, Terasaki M, Takahashi M, Kunugi S, Dedong K, et al. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. Am J Physiol Lung Cell Mol Physiol. 2011;301(4):L415–26. doi:10.1152/ajplung.00008.2011.

    Article  CAS  PubMed  Google Scholar 

  272. Jiang Z, Xu B, Yang M, Li Z, Zhang Y, Jiang D. Protection by hydrogen against gamma ray-induced testicular damage in rats. Basic Clin Pharmacol Toxicol. 2013;112(3):186–91. doi:10.1111/bcpt.12016.

    Article  CAS  PubMed  Google Scholar 

  273. Mei K, Zhao S, Qian L, Li B, Ni J, Cai J. Hydrogen protects rats from dermatitis caused by local radiation. J Dermatolog Treat. 2014;25(2):182–8. doi:10.3109/09546634.2012.762639.

    Article  CAS  PubMed  Google Scholar 

  274. Watanabe S, Fujita M, Ishihara M, Tachibana S, Yamamoto Y, Kaji T, et al. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J Radiat Res. 2014;55(6):1107–13. doi:10.1093/jrr/rru067.

    Article  PubMed Central  PubMed  Google Scholar 

  275. Qian L, Cao F, Cui J, Huang Y, Zhou X, Liu S, et al. Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res. 2010;44(3):275–82. doi:10.3109/10715760903468758.

    Article  CAS  PubMed  Google Scholar 

  276. Qian L, Li B, Cao F, Huang Y, Liu S, Cai J, et al. Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage. Nucl Technol Radiat Prot. 2010;25(1):23–9. doi:10.2298/ntrp1001023q.

    Article  CAS